亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of perceived sentences using deep neural networks in EEG

计算机科学 判决 解码方法 脑电图 语音识别 鉴定(生物学) 身份(音乐) 人工神经网络 人工智能 主题(文档) 自然语言处理 心理学 神经科学 植物 生物 电信 物理 图书馆学 声学
作者
Carlos Hernández García del Valle,Carolina Méndez‐Orellana,Christian Herff,María Rodríguez-Fernández
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ad88a3
摘要

Abstract Objetive. Decoding speech from brain activity can enable communication for individuals with speech disorders. Deep neural networks have shown great potential for speech decoding applications. However, the limited availability of large datasets containing neural recordings from speech-impaired subjects poses a challenge. Leveraging data from healthy participants can mitigate this limitation and expedite the development of speech neuroprostheses while minimizing the need for patient-specific training data. 
Approach. In this study, we collected a substantial dataset consisting of recordings from 56 healthy participants using 64 EEG channels. Multiple neural networks were trained to classify perceived sentences in the Spanish language using subject-independent, mixed-subjects, and fine-tuning approaches. The dataset has been made publicly available to foster further research in this area.
Main results. Our results demonstrate a remarkable level of accuracy in distinguishing sentence identity across 30 classes, showcasing the feasibility of training Deep Neural Networks (DNNs) to decode sentence identity from perceived speech using EEG. Notably, the subject-independent approach rendered accuracy comparable to the mixed-subjects approach, although with higher variability among subjects. Additionally, our fine-tuning approach yielded even higher accuracy, indicating an improved capability to adapt to individual subject characteristics, which enhances performance. This suggests that DNNs have effectively learned to decode universal features of brain activity across individuals while also being adaptable to specific participant data. Furthermore, our analyses indicate that EEGNet and DeepConvNet exhibit comparable performance, outperforming ShallowConvNet for sentence identity decoding. Finally, our Grad-CAM visualization analysis identifies key areas influencing the network's predictions, offering valuable insights into the neural processes underlying language perception and comprehension.
Significance. These findings advance our understanding of EEG-based speech perception decoding and hold promise for the development of speech neuroprostheses, particularly in scenarios where subjects cannot provide their own training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yau完成签到,获得积分10
33秒前
33秒前
陈杰发布了新的文献求助10
37秒前
pluto应助陈杰采纳,获得10
1分钟前
1分钟前
1分钟前
ZJR发布了新的文献求助10
1分钟前
huyx发布了新的文献求助10
1分钟前
yishan完成签到,获得积分10
1分钟前
GRATE完成签到 ,获得积分10
2分钟前
xiaofeiyan完成签到 ,获得积分10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
jyy应助科研通管家采纳,获得10
3分钟前
3分钟前
辛勤千筹发布了新的文献求助20
3分钟前
陈杰完成签到,获得积分10
3分钟前
zsmj23完成签到 ,获得积分0
5分钟前
7分钟前
luckyalias完成签到 ,获得积分10
7分钟前
ppapppap发布了新的文献求助10
7分钟前
ppapppap完成签到,获得积分20
7分钟前
wangermazi完成签到,获得积分10
8分钟前
脑洞疼应助Cassel采纳,获得10
8分钟前
9分钟前
Cassel发布了新的文献求助10
9分钟前
桐桐应助科研通管家采纳,获得10
9分钟前
传奇3应助科研通管家采纳,获得10
11分钟前
耳与总完成签到,获得积分10
13分钟前
Sandy完成签到,获得积分10
14分钟前
科研通AI2S应助cc采纳,获得10
16分钟前
17分钟前
彭于晏应助科研通管家采纳,获得10
17分钟前
如意竺完成签到,获得积分10
18分钟前
18分钟前
18分钟前
19分钟前
LLL完成签到,获得积分10
19分钟前
jyy完成签到,获得积分10
19分钟前
19分钟前
zz发布了新的文献求助10
19分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126163
求助须知:如何正确求助?哪些是违规求助? 2776302
关于积分的说明 7729792
捐赠科研通 2431786
什么是DOI,文献DOI怎么找? 1292236
科研通“疑难数据库(出版商)”最低求助积分说明 622664
版权声明 600408