已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unifying remote sensing change detection via deep probabilistic change models: From principles, models to applications

变更检测 概率逻辑 计算机科学 遥感 人工智能 地理
作者
Zhuo Zheng,Yanfei Zhong,Ji Zhao,Ailong Ma,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:215: 239-255 被引量:10
标识
DOI:10.1016/j.isprsjprs.2024.07.001
摘要

Change detection in high-resolution Earth observation is a fundamental Earth vision task to understand the subtle temporal dynamics of Earth's surface, significantly promoted by generic vision technologies in recent years. Vision Transformer is a powerful component to learning spatiotemporal representation but with enormous computation complexity, especially for high-resolution images. Besides, there is still lacking principles in designing macro architectures integrating these advanced vision components for various change detection tasks. In this paper, we present a deep probabilistic change model (DPCM) to provide a unified, interpretable, modular probabilistic change process modeling to address multiple change detection tasks, including binary change detection, one-to-many semantic change detection, and many-to-many semantic change detection. DPCM describes any complex change process as a probabilistic graphical model to provide theoretical evidence for macro architecture design and generic change detection task modeling. We refer to this probabilistic graphical model as the probabilistic change model (PCM), where DPCM is the PCM parameterized by deep neural networks. For parameterization, the PCM is factorized into many easy-to-solve distributions based on task-specific assumptions, and then we can use deep neural modules to parameterize these distributions to solve the change detection problem uniformly. In this way, DPCM has both theoretical macro architecture from PCM and strong representation capability of deep networks. We also present the sparse change Transformer for better parameterization. Inspired by domain knowledge, i.e., the sparsity of change and the local correlation of change, the sparse change Transformer computes self-attention within change regions to model spatiotemporal correlations, which has a quadratic computational complexity of the change region size but independent of image size, significantly reducing computation overhead for high-resolution image change detection. We refer to this instance of DPCM with sparse change Transformer as ChangeSparse to demonstrate their effectiveness. The experiments confirm ChangeSparse's superiority in speed and accuracy for multiple real-world application scenarios, such as disaster response and urban development monitoring. The code is available at https://github.com/Z-Zheng/pytorch-change-models. More resources can be found in http://rsidea.whu.edu.cn/resource_sharing.htm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路沉鱼完成签到 ,获得积分10
刚刚
虚心依白发布了新的文献求助10
1秒前
OnlyHarbour完成签到,获得积分10
2秒前
zz发布了新的文献求助10
2秒前
Akim应助雪白小丸子采纳,获得10
3秒前
dingbeicn完成签到,获得积分10
3秒前
xchi发布了新的文献求助10
4秒前
GGGrigor完成签到,获得积分0
7秒前
13秒前
cyy完成签到,获得积分10
14秒前
15秒前
randomnyle发布了新的文献求助10
15秒前
沉默的谷丝完成签到,获得积分10
16秒前
直率雪糕完成签到 ,获得积分10
17秒前
zhangwenkang发布了新的文献求助10
18秒前
书仁发布了新的文献求助30
22秒前
云初完成签到,获得积分10
26秒前
29秒前
tt完成签到 ,获得积分0
30秒前
35秒前
小fu完成签到,获得积分20
37秒前
开心点完成签到 ,获得积分10
38秒前
sidashu完成签到,获得积分10
39秒前
柯语雪完成签到 ,获得积分10
40秒前
zhangwenkang完成签到,获得积分10
41秒前
dadadsad完成签到,获得积分10
42秒前
梁33完成签到,获得积分10
43秒前
桶桶要好好学习完成签到,获得积分10
43秒前
46秒前
Pluto发布了新的文献求助10
53秒前
55秒前
阅月完成签到,获得积分10
57秒前
汉堡包应助悲凉的冬天采纳,获得10
58秒前
59秒前
liaoyoujiao发布了新的文献求助10
1分钟前
哲别发布了新的文献求助10
1分钟前
蜡笔小欣发布了新的文献求助30
1分钟前
1分钟前
852应助哲别采纳,获得10
1分钟前
liaoyoujiao完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564752
求助须知:如何正确求助?哪些是违规求助? 4649448
关于积分的说明 14688945
捐赠科研通 4591432
什么是DOI,文献DOI怎么找? 2519148
邀请新用户注册赠送积分活动 1491823
关于科研通互助平台的介绍 1462846