已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unifying remote sensing change detection via deep probabilistic change models: From principles, models to applications

变更检测 概率逻辑 计算机科学 遥感 人工智能 地理
作者
Zhuo Zheng,Yanfei Zhong,Ji Zhao,Ailong Ma,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:215: 239-255 被引量:10
标识
DOI:10.1016/j.isprsjprs.2024.07.001
摘要

Change detection in high-resolution Earth observation is a fundamental Earth vision task to understand the subtle temporal dynamics of Earth's surface, significantly promoted by generic vision technologies in recent years. Vision Transformer is a powerful component to learning spatiotemporal representation but with enormous computation complexity, especially for high-resolution images. Besides, there is still lacking principles in designing macro architectures integrating these advanced vision components for various change detection tasks. In this paper, we present a deep probabilistic change model (DPCM) to provide a unified, interpretable, modular probabilistic change process modeling to address multiple change detection tasks, including binary change detection, one-to-many semantic change detection, and many-to-many semantic change detection. DPCM describes any complex change process as a probabilistic graphical model to provide theoretical evidence for macro architecture design and generic change detection task modeling. We refer to this probabilistic graphical model as the probabilistic change model (PCM), where DPCM is the PCM parameterized by deep neural networks. For parameterization, the PCM is factorized into many easy-to-solve distributions based on task-specific assumptions, and then we can use deep neural modules to parameterize these distributions to solve the change detection problem uniformly. In this way, DPCM has both theoretical macro architecture from PCM and strong representation capability of deep networks. We also present the sparse change Transformer for better parameterization. Inspired by domain knowledge, i.e., the sparsity of change and the local correlation of change, the sparse change Transformer computes self-attention within change regions to model spatiotemporal correlations, which has a quadratic computational complexity of the change region size but independent of image size, significantly reducing computation overhead for high-resolution image change detection. We refer to this instance of DPCM with sparse change Transformer as ChangeSparse to demonstrate their effectiveness. The experiments confirm ChangeSparse's superiority in speed and accuracy for multiple real-world application scenarios, such as disaster response and urban development monitoring. The code is available at https://github.com/Z-Zheng/pytorch-change-models. More resources can be found in http://rsidea.whu.edu.cn/resource_sharing.htm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
周周完成签到 ,获得积分10
刚刚
吴荣方完成签到,获得积分10
3秒前
3秒前
坚强的纸飞机完成签到,获得积分10
3秒前
FOX完成签到,获得积分10
4秒前
dengdeng完成签到,获得积分10
5秒前
6秒前
l900完成签到,获得积分20
6秒前
dengdeng发布了新的文献求助10
8秒前
吴荣方发布了新的文献求助10
10秒前
壮观大炮完成签到,获得积分10
10秒前
小蘑菇应助热情的未来采纳,获得10
11秒前
Jasper应助轻松的小曾采纳,获得10
12秒前
酷波er应助内向的绿海采纳,获得10
15秒前
充电宝应助内向的绿海采纳,获得10
15秒前
鈮宝完成签到 ,获得积分10
15秒前
WerWu完成签到,获得积分0
18秒前
18秒前
19秒前
医疗废物专用车乘客完成签到,获得积分10
21秒前
小曾发布了新的文献求助10
22秒前
wwt发布了新的文献求助10
24秒前
FashionBoy应助内向的绿海采纳,获得10
27秒前
27秒前
三泥完成签到,获得积分10
27秒前
Fn完成签到 ,获得积分10
29秒前
Momomo应助科研通管家采纳,获得10
30秒前
脑洞疼应助科研通管家采纳,获得30
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
Momomo应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
Momomo应助科研通管家采纳,获得10
31秒前
Momomo应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
wanci应助科研通管家采纳,获得10
31秒前
Orange应助科研通管家采纳,获得10
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493621
求助须知:如何正确求助?哪些是违规求助? 4591657
关于积分的说明 14434342
捐赠科研通 4524055
什么是DOI,文献DOI怎么找? 2478579
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436426