亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unifying remote sensing change detection via deep probabilistic change models: From principles, models to applications

变更检测 概率逻辑 计算机科学 遥感 人工智能 地理
作者
Zhuo Zheng,Yanfei Zhong,Ji Zhao,Ailong Ma,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:215: 239-255 被引量:10
标识
DOI:10.1016/j.isprsjprs.2024.07.001
摘要

Change detection in high-resolution Earth observation is a fundamental Earth vision task to understand the subtle temporal dynamics of Earth's surface, significantly promoted by generic vision technologies in recent years. Vision Transformer is a powerful component to learning spatiotemporal representation but with enormous computation complexity, especially for high-resolution images. Besides, there is still lacking principles in designing macro architectures integrating these advanced vision components for various change detection tasks. In this paper, we present a deep probabilistic change model (DPCM) to provide a unified, interpretable, modular probabilistic change process modeling to address multiple change detection tasks, including binary change detection, one-to-many semantic change detection, and many-to-many semantic change detection. DPCM describes any complex change process as a probabilistic graphical model to provide theoretical evidence for macro architecture design and generic change detection task modeling. We refer to this probabilistic graphical model as the probabilistic change model (PCM), where DPCM is the PCM parameterized by deep neural networks. For parameterization, the PCM is factorized into many easy-to-solve distributions based on task-specific assumptions, and then we can use deep neural modules to parameterize these distributions to solve the change detection problem uniformly. In this way, DPCM has both theoretical macro architecture from PCM and strong representation capability of deep networks. We also present the sparse change Transformer for better parameterization. Inspired by domain knowledge, i.e., the sparsity of change and the local correlation of change, the sparse change Transformer computes self-attention within change regions to model spatiotemporal correlations, which has a quadratic computational complexity of the change region size but independent of image size, significantly reducing computation overhead for high-resolution image change detection. We refer to this instance of DPCM with sparse change Transformer as ChangeSparse to demonstrate their effectiveness. The experiments confirm ChangeSparse's superiority in speed and accuracy for multiple real-world application scenarios, such as disaster response and urban development monitoring. The code is available at https://github.com/Z-Zheng/pytorch-change-models. More resources can be found in http://rsidea.whu.edu.cn/resource_sharing.htm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助abc采纳,获得10
4秒前
辉辉完成签到,获得积分10
10秒前
诚心幻莲发布了新的文献求助10
19秒前
包破茧完成签到,获得积分0
22秒前
24秒前
38秒前
Criminology34举报迷路白枫求助涉嫌违规
47秒前
慕青应助keke采纳,获得10
50秒前
51秒前
51秒前
58秒前
MchemG应助hu采纳,获得20
1分钟前
keke发布了新的文献求助10
1分钟前
1分钟前
曾经白亦完成签到 ,获得积分10
1分钟前
doudou发布了新的文献求助10
1分钟前
1分钟前
doudou完成签到,获得积分10
1分钟前
abc发布了新的文献求助10
1分钟前
1分钟前
984295567完成签到,获得积分10
1分钟前
CipherSage应助keke采纳,获得10
1分钟前
genomed应助drsherlock采纳,获得10
1分钟前
韩寒完成签到 ,获得积分10
1分钟前
JEK发布了新的文献求助10
1分钟前
我是老大应助小正采纳,获得10
1分钟前
xuanjiawu完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
keke发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
loser完成签到 ,获得积分10
2分钟前
深情安青应助abc采纳,获得10
2分钟前
安青兰完成签到 ,获得积分10
2分钟前
zeice完成签到 ,获得积分10
2分钟前
2分钟前
王一一完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606564
求助须知:如何正确求助?哪些是违规求助? 4691031
关于积分的说明 14866772
捐赠科研通 4707326
什么是DOI,文献DOI怎么找? 2542867
邀请新用户注册赠送积分活动 1508211
关于科研通互助平台的介绍 1472276