Unifying remote sensing change detection via deep probabilistic change models: From principles, models to applications

变更检测 概率逻辑 计算机科学 遥感 人工智能 地理
作者
Zhuo Zheng,Yanfei Zhong,Ji Zhao,Ailong Ma,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:215: 239-255
标识
DOI:10.1016/j.isprsjprs.2024.07.001
摘要

Change detection in high-resolution Earth observation is a fundamental Earth vision task to understand the subtle temporal dynamics of Earth's surface, significantly promoted by generic vision technologies in recent years. Vision Transformer is a powerful component to learning spatiotemporal representation but with enormous computation complexity, especially for high-resolution images. Besides, there is still lacking principles in designing macro architectures integrating these advanced vision components for various change detection tasks. In this paper, we present a deep probabilistic change model (DPCM) to provide a unified, interpretable, modular probabilistic change process modeling to address multiple change detection tasks, including binary change detection, one-to-many semantic change detection, and many-to-many semantic change detection. DPCM describes any complex change process as a probabilistic graphical model to provide theoretical evidence for macro architecture design and generic change detection task modeling. We refer to this probabilistic graphical model as the probabilistic change model (PCM), where DPCM is the PCM parameterized by deep neural networks. For parameterization, the PCM is factorized into many easy-to-solve distributions based on task-specific assumptions, and then we can use deep neural modules to parameterize these distributions to solve the change detection problem uniformly. In this way, DPCM has both theoretical macro architecture from PCM and strong representation capability of deep networks. We also present the sparse change Transformer for better parameterization. Inspired by domain knowledge, i.e., the sparsity of change and the local correlation of change, the sparse change Transformer computes self-attention within change regions to model spatiotemporal correlations, which has a quadratic computational complexity of the change region size but independent of image size, significantly reducing computation overhead for high-resolution image change detection. We refer to this instance of DPCM with sparse change Transformer as ChangeSparse to demonstrate their effectiveness. The experiments confirm ChangeSparse's superiority in speed and accuracy for multiple real-world application scenarios, such as disaster response and urban development monitoring. The code is available at https://github.com/Z-Zheng/pytorch-change-models. More resources can be found in http://rsidea.whu.edu.cn/resource_sharing.htm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杉杉完成签到 ,获得积分10
1秒前
2秒前
小张想发刊完成签到,获得积分10
2秒前
xumou完成签到 ,获得积分0
2秒前
zxh完成签到,获得积分10
4秒前
许起眸完成签到,获得积分10
4秒前
5秒前
5秒前
pengchen发布了新的文献求助10
6秒前
suyi完成签到,获得积分10
9秒前
上官老黑发布了新的文献求助10
9秒前
高雯发布了新的文献求助10
10秒前
nml发布了新的文献求助10
11秒前
笨笨凡松完成签到,获得积分10
11秒前
Jerlly完成签到,获得积分10
12秒前
科研通AI5应助丰富海之采纳,获得10
14秒前
感动的听荷完成签到,获得积分10
15秒前
天天完成签到 ,获得积分10
15秒前
222完成签到,获得积分10
18秒前
Hover完成签到,获得积分0
25秒前
馅饼完成签到,获得积分10
26秒前
26秒前
落霞完成签到,获得积分10
26秒前
Can发布了新的文献求助10
26秒前
一笑奈何完成签到,获得积分10
29秒前
JinGN完成签到,获得积分10
34秒前
cyskdsn完成签到 ,获得积分10
35秒前
36秒前
小薛完成签到,获得积分10
36秒前
36秒前
41秒前
伶俐一曲完成签到,获得积分10
41秒前
FKVB_完成签到 ,获得积分10
42秒前
CodeCraft应助优雅的沛白采纳,获得10
42秒前
无限的绮晴完成签到,获得积分10
43秒前
席涑完成签到,获得积分10
44秒前
迟迟完成签到 ,获得积分10
46秒前
50秒前
aa完成签到,获得积分10
51秒前
DrD完成签到,获得积分10
53秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671396
求助须知:如何正确求助?哪些是违规求助? 3228175
关于积分的说明 9778895
捐赠科研通 2938498
什么是DOI,文献DOI怎么找? 1610040
邀请新用户注册赠送积分活动 760520
科研通“疑难数据库(出版商)”最低求助积分说明 736020