Digital twin-assisted intelligent fault diagnosis for bearings

断层(地质) 计算机科学 可靠性工程 人工智能 工程类 地质学 地震学
作者
Siqi Gong,Shunming Li,Yongchao Zhang,Lifang Zhou,Min Xia
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106128-106128 被引量:1
标识
DOI:10.1088/1361-6501/ad5f4c
摘要

Abstract Data-driven intelligent fault diagnosis methods generally require a large amount of labeled data and considerable time to train network models. However, obtaining sufficient labeled data in practical industrial scenarios has always been a challenge, which hinders the practical application of data-driven methods. A digital twin (DT) model of rolling bearings can generate labeled training dataset for various bearing faults, supplementing the limited measured data. This paper proposes a novel DT-assisted approach to address the issue of limited measured data for bearing fault diagnosis. First, a dynamic model of bearing with damages is introduced to generate simulated bearing acceleration vibration signals. A DT model is constructed in Simulink, where the model parameters are updated based on the actual system behavior. Second, the structural parameters of the DT model are adaptively updated using least squares method with the measured data. Third, a Vision Transformer (ViT) -based network, integrated with short-time Fourier transform, is developed to achieve accurate fault diagnosis. By applying short-time Fourier transform at the input end of the ViT network, the model effectively extracts additional information from the vibration signals. Pre-training the network with an extensive dataset from miscellaneous tasks enables the acquisition of pre-trained weights, which are subsequently transferred to the bearing fault diagnosis task. Experiments results verify that the proposed approach can achieve higher diagnostic accuracy and better stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共情发布了新的文献求助10
1秒前
Jasper应助明杰采纳,获得10
1秒前
1秒前
Eliauk完成签到,获得积分10
2秒前
书生发布了新的文献求助10
2秒前
Ava应助我的麦子熟了采纳,获得10
3秒前
3秒前
尊敬寒松发布了新的文献求助10
5秒前
5秒前
浮浮沉沉完成签到,获得积分10
6秒前
LL发布了新的文献求助10
7秒前
Theprisoners举报太叔之双求助涉嫌违规
8秒前
哭泣的缘郡完成签到 ,获得积分10
8秒前
11秒前
张瑞宁发布了新的文献求助10
11秒前
dilemma完成签到,获得积分10
11秒前
12秒前
烟雨梦兮发布了新的文献求助10
12秒前
顺心牛排完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
17秒前
大喵发布了新的文献求助10
17秒前
18秒前
张瑞宁完成签到,获得积分10
18秒前
奚娜发布了新的文献求助10
19秒前
完美世界应助Mrchen采纳,获得10
19秒前
20秒前
鱼鱼鱼发布了新的文献求助10
20秒前
20秒前
20秒前
熊仔一百完成签到,获得积分0
21秒前
22秒前
小小黑发布了新的文献求助10
22秒前
情怀应助风趣怜烟采纳,获得10
22秒前
明杰完成签到,获得积分10
23秒前
CipherSage应助Alma采纳,获得10
23秒前
自觉的宝贝完成签到,获得积分10
23秒前
Will完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992746
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263200
捐赠科研通 3273346
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809609