Digital twin-assisted intelligent fault diagnosis for bearings

断层(地质) 计算机科学 可靠性工程 人工智能 工程类 地质学 地震学
作者
Siqi Gong,Shunming Li,Yongchao Zhang,Lifang Zhou,Min Xia
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106128-106128
标识
DOI:10.1088/1361-6501/ad5f4c
摘要

Abstract Data-driven intelligent fault diagnosis methods generally require a large amount of labeled data and considerable time to train network models. However, obtaining sufficient labeled data in practical industrial scenarios has always been a challenge, which hinders the practical application of data-driven methods. A digital twin (DT) model of rolling bearings can generate labeled training dataset for various bearing faults, supplementing the limited measured data. This paper proposes a novel DT-assisted approach to address the issue of limited measured data for bearing fault diagnosis. First, a dynamic model of bearing with damages is introduced to generate simulated bearing acceleration vibration signals. A DT model is constructed in Simulink, where the model parameters are updated based on the actual system behavior. Second, the structural parameters of the DT model are adaptively updated using least squares method with the measured data. Third, a Vision Transformer (ViT) -based network, integrated with short-time Fourier transform, is developed to achieve accurate fault diagnosis. By applying short-time Fourier transform at the input end of the ViT network, the model effectively extracts additional information from the vibration signals. Pre-training the network with an extensive dataset from miscellaneous tasks enables the acquisition of pre-trained weights, which are subsequently transferred to the bearing fault diagnosis task. Experiments results verify that the proposed approach can achieve higher diagnostic accuracy and better stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
搞科研的静静完成签到,获得积分10
2秒前
可爱的函函应助proteinpurify采纳,获得10
3秒前
ashore发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
潇洒的小鸽子完成签到 ,获得积分10
4秒前
5秒前
星星完成签到,获得积分10
6秒前
lx840518发布了新的文献求助20
6秒前
8秒前
8秒前
尊敬曼岚发布了新的文献求助10
8秒前
刘艺珍完成签到,获得积分10
8秒前
ed发布了新的文献求助10
9秒前
leslie完成签到,获得积分10
9秒前
咋了完成签到 ,获得积分10
9秒前
10秒前
安然发布了新的文献求助10
10秒前
11秒前
12秒前
霸气的惜寒完成签到,获得积分10
12秒前
Levi_Liang发布了新的文献求助10
13秒前
13秒前
wanci应助东方既白采纳,获得10
14秒前
15秒前
xxl发布了新的文献求助10
15秒前
leslie发布了新的文献求助10
17秒前
17秒前
深渊与海完成签到,获得积分10
17秒前
白水晶发布了新的文献求助10
17秒前
17秒前
sjf完成签到,获得积分20
18秒前
ashore完成签到,获得积分10
18秒前
20秒前
21秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142067
求助须知:如何正确求助?哪些是违规求助? 2793006
关于积分的说明 7805015
捐赠科研通 2449359
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291