Digital twin-assisted intelligent fault diagnosis for bearings

断层(地质) 计算机科学 可靠性工程 人工智能 工程类 地质学 地震学
作者
Siqi Gong,Shunming Li,Yongchao Zhang,Lifang Zhou,Min Xia
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106128-106128 被引量:1
标识
DOI:10.1088/1361-6501/ad5f4c
摘要

Abstract Data-driven intelligent fault diagnosis methods generally require a large amount of labeled data and considerable time to train network models. However, obtaining sufficient labeled data in practical industrial scenarios has always been a challenge, which hinders the practical application of data-driven methods. A digital twin (DT) model of rolling bearings can generate labeled training dataset for various bearing faults, supplementing the limited measured data. This paper proposes a novel DT-assisted approach to address the issue of limited measured data for bearing fault diagnosis. First, a dynamic model of bearing with damages is introduced to generate simulated bearing acceleration vibration signals. A DT model is constructed in Simulink, where the model parameters are updated based on the actual system behavior. Second, the structural parameters of the DT model are adaptively updated using least squares method with the measured data. Third, a Vision Transformer (ViT) -based network, integrated with short-time Fourier transform, is developed to achieve accurate fault diagnosis. By applying short-time Fourier transform at the input end of the ViT network, the model effectively extracts additional information from the vibration signals. Pre-training the network with an extensive dataset from miscellaneous tasks enables the acquisition of pre-trained weights, which are subsequently transferred to the bearing fault diagnosis task. Experiments results verify that the proposed approach can achieve higher diagnostic accuracy and better stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李狗蛋完成签到,获得积分10
1秒前
1秒前
奇客完成签到,获得积分10
2秒前
2秒前
3秒前
PKU_Harzen发布了新的文献求助200
4秒前
yeung完成签到,获得积分20
4秒前
浮游应助空山新雨采纳,获得10
5秒前
5秒前
夏了发布了新的文献求助10
7秒前
小马甲应助缥缈的紫萱采纳,获得10
7秒前
7秒前
tianwenxiaozi完成签到,获得积分10
7秒前
8秒前
轻吟完成签到,获得积分10
8秒前
景飞丹发布了新的文献求助10
9秒前
boymin2015发布了新的文献求助10
9秒前
9秒前
海纳百川完成签到,获得积分10
10秒前
充电宝应助看我表演采纳,获得30
10秒前
可爱的函函应助夏了采纳,获得30
10秒前
joodeuk完成签到,获得积分10
12秒前
Xiaowen发布了新的文献求助10
12秒前
SciGPT应助LIU采纳,获得10
12秒前
12秒前
Owen应助马红梅采纳,获得10
13秒前
小北完成签到,获得积分20
13秒前
淡然冬灵发布了新的文献求助10
14秒前
完美世界应助tianwenxiaozi采纳,获得10
14秒前
轻吟发布了新的文献求助10
14秒前
坡坡大王完成签到,获得积分10
15秒前
夏xia完成签到 ,获得积分10
15秒前
丘比特应助看我表演采纳,获得10
16秒前
科研通AI5应助m123采纳,获得10
17秒前
章鱼发布了新的文献求助10
18秒前
18秒前
19秒前
机智的忆灵完成签到,获得积分10
19秒前
21秒前
半夏完成签到 ,获得积分10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124448
求助须知:如何正确求助?哪些是违规求助? 4328721
关于积分的说明 13488255
捐赠科研通 4163099
什么是DOI,文献DOI怎么找? 2282182
邀请新用户注册赠送积分活动 1283377
关于科研通互助平台的介绍 1222607