Digital twin-assisted intelligent fault diagnosis for bearings

断层(地质) 计算机科学 可靠性工程 人工智能 工程类 地质学 地震学
作者
Siqi Gong,Shunming Li,Yongchao Zhang,Lifang Zhou,Min Xia
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106128-106128 被引量:13
标识
DOI:10.1088/1361-6501/ad5f4c
摘要

Abstract Data-driven intelligent fault diagnosis methods generally require a large amount of labeled data and considerable time to train network models. However, obtaining sufficient labeled data in practical industrial scenarios has always been a challenge, which hinders the practical application of data-driven methods. A digital twin (DT) model of rolling bearings can generate labeled training dataset for various bearing faults, supplementing the limited measured data. This paper proposes a novel DT-assisted approach to address the issue of limited measured data for bearing fault diagnosis. First, a dynamic model of bearing with damages is introduced to generate simulated bearing acceleration vibration signals. A DT model is constructed in Simulink, where the model parameters are updated based on the actual system behavior. Second, the structural parameters of the DT model are adaptively updated using least squares method with the measured data. Third, a Vision Transformer (ViT) -based network, integrated with short-time Fourier transform, is developed to achieve accurate fault diagnosis. By applying short-time Fourier transform at the input end of the ViT network, the model effectively extracts additional information from the vibration signals. Pre-training the network with an extensive dataset from miscellaneous tasks enables the acquisition of pre-trained weights, which are subsequently transferred to the bearing fault diagnosis task. Experiments results verify that the proposed approach can achieve higher diagnostic accuracy and better stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐乐应助weiwenzuo采纳,获得10
2秒前
3秒前
5秒前
6秒前
7秒前
爱吃菠萝蜜完成签到,获得积分10
7秒前
7秒前
浮游应助Yanjjjjyun采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
宋浩奇完成签到,获得积分10
9秒前
10秒前
10秒前
王康发布了新的文献求助10
11秒前
隐形曼青应助Daniel2010采纳,获得10
11秒前
DY驳回了英姑应助
12秒前
精灵夜雨完成签到,获得积分10
12秒前
宋浩奇发布了新的文献求助10
13秒前
iNk应助欧皇采纳,获得10
13秒前
13秒前
13秒前
Tyler发布了新的文献求助10
15秒前
15秒前
科研通AI6应助sifLiu采纳,获得10
15秒前
15秒前
害羞彩虹完成签到,获得积分20
16秒前
没有名称完成签到,获得积分10
16秒前
16秒前
王康完成签到,获得积分10
17秒前
17秒前
冷傲迎梦发布了新的文献求助10
18秒前
搜集达人应助111版采纳,获得10
20秒前
wanwusheng完成签到,获得积分10
22秒前
WUJIAYU完成签到,获得积分10
23秒前
25秒前
suger完成签到,获得积分10
26秒前
29秒前
蔺蔺发布了新的文献求助10
30秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415163
求助须知:如何正确求助?哪些是违规求助? 4531822
关于积分的说明 14130468
捐赠科研通 4447366
什么是DOI,文献DOI怎么找? 2439667
邀请新用户注册赠送积分活动 1431779
关于科研通互助平台的介绍 1409365