Nonlinear dynamics of multi-omics profiles during human aging

疾病 组学 老化 生物 队列 老年学 生物信息学 医学 生理学 进化生物学 计算生物学 内科学 遗传学
作者
Xiaotao Shen,Chuchu Wang,Xin Zhou,Wenyu Zhou,Daniel Hornburg,Si Wu,M Snyder
出处
期刊:Nature Aging 被引量:6
标识
DOI:10.1038/s43587-024-00692-2
摘要

Abstract Aging is a complex process associated with nearly all diseases. Understanding the molecular changes underlying aging and identifying therapeutic targets for aging-related diseases are crucial for increasing healthspan. Although many studies have explored linear changes during aging, the prevalence of aging-related diseases and mortality risk accelerates after specific time points, indicating the importance of studying nonlinear molecular changes. In this study, we performed comprehensive multi-omics profiling on a longitudinal human cohort of 108 participants, aged between 25 years and 75 years. The participants resided in California, United States, and were tracked for a median period of 1.7 years, with a maximum follow-up duration of 6.8 years. The analysis revealed consistent nonlinear patterns in molecular markers of aging, with substantial dysregulation occurring at two major periods occurring at approximately 44 years and 60 years of chronological age. Distinct molecules and functional pathways associated with these periods were also identified, such as immune regulation and carbohydrate metabolism that shifted during the 60-year transition and cardiovascular disease, lipid and alcohol metabolism changes at the 40-year transition. Overall, this research demonstrates that functions and risks of aging-related diseases change nonlinearly across the human lifespan and provides insights into the molecular and biological pathways involved in these changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Meiyu采纳,获得10
1秒前
小董不懂发布了新的文献求助10
2秒前
甜美的夏之完成签到,获得积分10
2秒前
Bsisoy完成签到,获得积分10
2秒前
2秒前
思源应助笨笨平松采纳,获得10
3秒前
纯牛奶完成签到,获得积分10
3秒前
Atlantis完成签到,获得积分10
3秒前
Dreames发布了新的文献求助10
4秒前
4秒前
5秒前
李东东完成签到 ,获得积分10
5秒前
李健的小迷弟应助feng_qi001采纳,获得10
7秒前
Frieren完成签到 ,获得积分10
8秒前
谢谢完成签到 ,获得积分10
8秒前
大个应助Dreames采纳,获得10
9秒前
Mry完成签到,获得积分10
10秒前
hyw完成签到,获得积分10
10秒前
苹果追命发布了新的文献求助10
11秒前
努力向上的小刘完成签到 ,获得积分10
11秒前
joybee完成签到,获得积分0
12秒前
宁学者完成签到,获得积分10
12秒前
12秒前
Atlantis完成签到,获得积分10
13秒前
xiang完成签到 ,获得积分10
13秒前
14秒前
锤锤完成签到 ,获得积分10
14秒前
Singularity应助geogydeniel采纳,获得20
14秒前
科研通AI2S应助虚拟的秋寒采纳,获得10
15秒前
FANGQUAN完成签到 ,获得积分10
16秒前
一抔之土完成签到,获得积分10
16秒前
三三四发布了新的文献求助10
17秒前
小高高发布了新的文献求助10
17秒前
王敏完成签到 ,获得积分10
17秒前
fff完成签到,获得积分10
19秒前
一抔之土发布了新的文献求助10
20秒前
Orange应助chrysan采纳,获得10
20秒前
义气的巨人完成签到,获得积分10
20秒前
自然的雅琴关注了科研通微信公众号
24秒前
英俊的铭应助lensray采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137155
求助须知:如何正确求助?哪些是违规求助? 2788182
关于积分的说明 7784837
捐赠科研通 2444146
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011