An Intrusion Detection Mechanism for Wireless Sensor Networks in Smart Environments using Self Attention Generative Adversarial Capsule Network

计算机科学 无线传感器网络 机制(生物学) 对抗制 入侵检测系统 生成语法 入侵防御系统 计算机网络 无线网络 无线 人工智能 电信 哲学 认识论
作者
T. Senthil Kumaran,A. Muruganandham,D. Sobya,Mahantesh Mathapati
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
标识
DOI:10.1142/s0218126625500173
摘要

Cyber-physical system is one of the essential components of wireless sensor network (WSN). WSN conjointly senses, collects, analyzes and communicates data on recognized items at service part before transmitting this data to the owner of the network. Blackhole, Grayhole, Flooding, Scheduling are the common WSN attacks that rapidly damage the system. Intrusion detection systems, such as WSN have drawbacks, like less detection rates, high computation costs and high percentage of false alarms, because sensor nodes have limited resources. Therefore, a Self Attention Generative Adversarial Capsule Network as an intrusion detection scheme for WSN (SAGACN-ID-WSN) is proposed in this paper to address the aforementioned issues. Initially, the data are amassed from WSN-DS dataset. Then, the data are sent for pre-processing. The input data are preprocessed using the Guided Box Filtering (GBF) method. Then, the preprocessed data are provided to the Atomic Orbital Search (AOS), Tasmanian Devil Optimization (TDO) and Ebola Optimization Search (EOS) algorithms for feature selection. The attacks are divided into four categories: normal, Grayhole attack, Black hole attack, flooding attack, and scheduling attack. The proposed ID-WSN is implemented in Network simulator 2 (NS-2) utilizing the dataset of WSN-DS. The metrics, like accuracy, precision, recall, F-measure, ROC and computational time are analyzed. The proposed SAGACN-ID-WSN technique attains 25.5%, 20.12% and 20.7% high accuracy, 51.136%, 59.04% and 32.81%; higher precision, 2.292%, 1.51% and 3.915% lower error rate compared to the existing models, like Dataset for Intrusion Detection Systems in WSN (SLGBM-ID-WSN), multi-layer machine learning-based ID-WSN (NB-RF-ID-WSN), deep learning and entity embedding-base intrusion detection systems in WSN, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦小猫咪完成签到,获得积分10
刚刚
1秒前
1秒前
斯文败类应助haoliu采纳,获得10
1秒前
贾克斯发布了新的文献求助10
1秒前
冷酷的灭龙应助文件撤销了驳回
1秒前
2秒前
完美世界应助玉龙爬雪山采纳,获得10
3秒前
缓慢的王完成签到,获得积分10
5秒前
5秒前
司空天磊完成签到,获得积分10
6秒前
儒雅烤鸡发布了新的文献求助10
8秒前
8秒前
破特头完成签到,获得积分10
8秒前
Yaze完成签到 ,获得积分10
11秒前
科研通AI5应助Atlantis采纳,获得30
11秒前
jjz完成签到,获得积分10
11秒前
无花果应助大麦迪采纳,获得10
12秒前
安安完成签到,获得积分10
12秒前
王文静完成签到,获得积分10
13秒前
mix完成签到,获得积分20
13秒前
沙卡拉卡完成签到,获得积分20
14秒前
lw发布了新的文献求助10
14秒前
wh雨发布了新的文献求助20
14秒前
zuizui发布了新的文献求助10
15秒前
满意的香菇完成签到,获得积分10
18秒前
haoliu完成签到,获得积分10
18秒前
Yang完成签到,获得积分10
19秒前
fjh应助贾克斯采纳,获得10
19秒前
21秒前
23秒前
24秒前
25秒前
吾日三省吾身完成签到 ,获得积分10
26秒前
26秒前
多肉丸子发布了新的文献求助10
27秒前
28秒前
29秒前
儒雅烤鸡完成签到,获得积分10
30秒前
曹操完成签到,获得积分10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734603
求助须知:如何正确求助?哪些是违规求助? 3278545
关于积分的说明 10009929
捐赠科研通 2995186
什么是DOI,文献DOI怎么找? 1643254
邀请新用户注册赠送积分活动 781019
科研通“疑难数据库(出版商)”最低求助积分说明 749199