Trustworthy Evaluation of Clinical AI for Analysis of Medical Images in Diverse Populations

计算机科学 分级(工程) 人口 人工智能 元数据 介绍 医学 验光服务 家庭医学 万维网 环境卫生 土木工程 工程类
作者
Jiri Fajtl,Roshan Alex Welikala,Sarah Barman,Ryan Chambers,Louis Bolter,John Anderson,Abraham Olvera‐Barrios,Royce Shakespeare,Catherine Egan,Christopher G. Owen,Adnan Tufail,Alicja R. Rudnicka
标识
DOI:10.1056/aioa2400353
摘要

BackgroundThe deployment of algorithms in health care screening programs has been hindered by a lack of agreed-upon methodology to evaluate trustworthiness and equity. We outline transferable methodology for independent evaluation of algorithms using a routine, high-volume, multiethnic national diabetic eye screening program as an exemplar. Automated retinal image analysis systems (ARIAS), including artificial intelligence (AI), for detection of diabetic retinopathy (DR) could substantially increase image-grading capacity. We report technical and operational considerations relevant to implementation and evaluation in large-scale population screening.MethodsTwenty-five vendors with current or pending Conformité Européene Class IIa ARIAS for DR detection from retinal images were invited. Sample data (6268 images) were provided to confirm that ARIAS outputs could be replicated in a trusted research environment. We curated consecutive routine screening encounters between January 1, 2021 and December 31, 2022 at the North East London Diabetic Eye Screening Programme for evaluation. Sample size calculations focused on precision for detection of severe DR by population subgroups, particularly ethnicity. Vendor algorithms did not have access to human grading data or other metadata during image processing.ResultsEight of 25 eligible vendors participated. In total, 202,886 encounters were evaluated, representing 1.2 million images from 32% white, 17% Black, and 39% South Asian ethnic groups, including approximately 25,000 cases requiring referral to ophthalmology for review and treatment. Image resolutions varied from 150 × 300 to 6000 × 4000 pixels. Time from study invitation to ARIAS installation and algorithm verification ranged from 96 to 460 days; image processing required between 13.5 hours and 105 days.ConclusionsThis comparison of ARIAS at scale on a range of images with different characteristics, including a population of different ethnicities, wide age range, levels of deprivation, and spectrum of DR, provides the framework for transparent, equitable, robust, and trustworthy evaluation of clinical AI in screening to inform standards in health care before deployment. (Funded by the NHS Transformation Directorate and The Health Foundation and managed by the National Institute for Health and Social Care Research.)

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
汉堡包应助生动的海露采纳,获得30
2秒前
木子三少完成签到,获得积分0
2秒前
3秒前
碧蓝的澜完成签到,获得积分10
4秒前
咕噜咕噜发布了新的文献求助10
5秒前
YangC完成签到,获得积分10
6秒前
6秒前
QQQ发布了新的文献求助10
7秒前
7秒前
共享精神应助栗子采纳,获得30
8秒前
8秒前
笨笨凡完成签到,获得积分10
9秒前
我说苏卡你说不列完成签到,获得积分10
10秒前
执着访文应助Fairyvivi采纳,获得20
10秒前
Lumi应助tongxiehou1采纳,获得10
11秒前
11秒前
QQQ完成签到,获得积分10
11秒前
whg完成签到,获得积分10
12秒前
13秒前
长江发布了新的文献求助10
13秒前
14秒前
14秒前
潇洒海亦完成签到,获得积分10
15秒前
15秒前
lialiad完成签到,获得积分10
16秒前
宣依云发布了新的文献求助10
16秒前
17秒前
慈祥的乐菱完成签到,获得积分10
17秒前
Roypeng发布了新的文献求助10
19秒前
成7发布了新的文献求助10
20秒前
22秒前
tll发布了新的文献求助10
23秒前
乌冬面完成签到,获得积分10
23秒前
Akim应助长江采纳,获得10
23秒前
24秒前
KK完成签到 ,获得积分10
25秒前
27秒前
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149519
求助须知:如何正确求助?哪些是违规求助? 2800571
关于积分的说明 7840676
捐赠科研通 2458112
什么是DOI,文献DOI怎么找? 1308279
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706