A deep learning-based convolutional spatiotemporal network proxy model for reservoir production prediction

代理(统计) 卷积神经网络 数据挖掘 计算机科学 人工神经网络 深度学习 算法 人工智能 机器学习
作者
Qilong Chen,Yunfeng Xu,Fankun Meng,Hui Zhao,Wentao Zhan
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8)
标识
DOI:10.1063/5.0215063
摘要

Accurate production prediction is crucial in the field of reservoir management and production optimization. Traditional models often struggle with the complexities of nonlinear relationships and high-dimensional data, which hinders their ability to capture the variability of the production process efficiently and results in time-consuming calculations. To overcome these limitations, this paper introduces an innovative proxy modeling technique employing a convolutional spatiotemporal neural network. This method utilizes convolutional neural networks to extract spatial features from high-dimensional data, while the Transformer is used to model and predict complex temporal dynamics in production. To validate the effectiveness of the proposed proxy model, two case studies involving four injection and nine production wells within two-dimensional (2D) and three-dimensional (3D) non-homogeneous reservoirs were conducted, with the R2 coefficient serving as the primary evaluation metric. As the number of training iterations and data volume increase, the proxy model demonstrates rapid convergence. In tests conducted on the 2D and 3D datasets, the average R2 value exceeded 0.96 and 0.94. These results confirm the accuracy and stability of the proxy model. It also shows that the proxy model can accurately describe the geological and fluid seepage characteristics of the reservoir, which in turn can achieve a highly accurate match with the real data. In addition, the computational time is reduced by two orders of magnitude compared to traditional models. Compared with the long short-term memory method, the accuracy of the prediction results is increased by 30%, which greatly enhances efficiency and accuracy. To some extent, the presented proxy model can provide some guidance for the efficient history match of production data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助洁净的天佑采纳,获得10
刚刚
1秒前
王玥发布了新的文献求助10
2秒前
小白发布了新的文献求助10
2秒前
2秒前
乐观的菜汪完成签到,获得积分10
2秒前
宋志远完成签到,获得积分10
2秒前
3秒前
4秒前
平淡松完成签到 ,获得积分10
4秒前
潇洒映冬发布了新的文献求助10
5秒前
5秒前
火山羊发布了新的文献求助10
6秒前
6秒前
晴晴发布了新的文献求助10
7秒前
memory发布了新的文献求助10
8秒前
8秒前
zcc111发布了新的文献求助10
10秒前
waaan完成签到 ,获得积分20
10秒前
王鑫发布了新的文献求助10
11秒前
烟花应助ccc采纳,获得10
11秒前
lby发布了新的文献求助10
11秒前
qianzheng应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
13秒前
buno应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
13秒前
iNk应助科研通管家采纳,获得20
13秒前
iNk应助科研通管家采纳,获得20
13秒前
不配.应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
13秒前
爆米花应助spume采纳,获得30
14秒前
14秒前
田様应助典雅的俊驰采纳,获得10
18秒前
xjcy应助猪猪侠采纳,获得10
18秒前
xjcy应助猪猪侠采纳,获得10
18秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222654
求助须知:如何正确求助?哪些是违规求助? 2871361
关于积分的说明 8175131
捐赠科研通 2538314
什么是DOI,文献DOI怎么找? 1370440
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619647