A deep learning-based convolutional spatiotemporal network proxy model for reservoir production prediction

代理(统计) 卷积神经网络 数据挖掘 计算机科学 人工神经网络 深度学习 算法 人工智能 机器学习
作者
Qilong Chen,Yunfeng Xu,Fankun Meng,Hui Zhao,Wentao Zhan
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8)
标识
DOI:10.1063/5.0215063
摘要

Accurate production prediction is crucial in the field of reservoir management and production optimization. Traditional models often struggle with the complexities of nonlinear relationships and high-dimensional data, which hinders their ability to capture the variability of the production process efficiently and results in time-consuming calculations. To overcome these limitations, this paper introduces an innovative proxy modeling technique employing a convolutional spatiotemporal neural network. This method utilizes convolutional neural networks to extract spatial features from high-dimensional data, while the Transformer is used to model and predict complex temporal dynamics in production. To validate the effectiveness of the proposed proxy model, two case studies involving four injection and nine production wells within two-dimensional (2D) and three-dimensional (3D) non-homogeneous reservoirs were conducted, with the R2 coefficient serving as the primary evaluation metric. As the number of training iterations and data volume increase, the proxy model demonstrates rapid convergence. In tests conducted on the 2D and 3D datasets, the average R2 value exceeded 0.96 and 0.94. These results confirm the accuracy and stability of the proxy model. It also shows that the proxy model can accurately describe the geological and fluid seepage characteristics of the reservoir, which in turn can achieve a highly accurate match with the real data. In addition, the computational time is reduced by two orders of magnitude compared to traditional models. Compared with the long short-term memory method, the accuracy of the prediction results is increased by 30%, which greatly enhances efficiency and accuracy. To some extent, the presented proxy model can provide some guidance for the efficient history match of production data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
科研通AI2S应助PanCiro采纳,获得10
2秒前
LXF发布了新的文献求助10
2秒前
司徒无剑完成签到,获得积分10
2秒前
透射电镜完成签到,获得积分10
2秒前
shine发布了新的文献求助10
3秒前
所所应助汤飞柏采纳,获得10
3秒前
Ran发布了新的文献求助10
4秒前
陈佳完成签到 ,获得积分10
4秒前
zuo发布了新的文献求助10
5秒前
木木应助yy采纳,获得10
5秒前
bkagyin应助米丫丫米采纳,获得10
6秒前
6秒前
张wx_100发布了新的文献求助10
7秒前
詹笑天发布了新的文献求助30
7秒前
7秒前
8秒前
柒柒牧马完成签到,获得积分10
8秒前
悉达多完成签到,获得积分10
8秒前
8秒前
10秒前
wangdh完成签到,获得积分10
10秒前
幸福时光应助顺利的雁采纳,获得200
11秒前
终将散落凡尘完成签到,获得积分10
12秒前
Lea发布了新的文献求助30
12秒前
smottom应助段段采纳,获得10
12秒前
自由无声发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
15秒前
16秒前
Ricardo完成签到 ,获得积分10
16秒前
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113