A deep learning-based convolutional spatiotemporal network proxy model for reservoir production prediction

代理(统计) 卷积神经网络 数据挖掘 计算机科学 人工神经网络 深度学习 算法 人工智能 机器学习
作者
Qilong Chen,Yunfeng Xu,Fankun Meng,Hui Zhao,Wentao Zhan
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8) 被引量:4
标识
DOI:10.1063/5.0215063
摘要

Accurate production prediction is crucial in the field of reservoir management and production optimization. Traditional models often struggle with the complexities of nonlinear relationships and high-dimensional data, which hinders their ability to capture the variability of the production process efficiently and results in time-consuming calculations. To overcome these limitations, this paper introduces an innovative proxy modeling technique employing a convolutional spatiotemporal neural network. This method utilizes convolutional neural networks to extract spatial features from high-dimensional data, while the Transformer is used to model and predict complex temporal dynamics in production. To validate the effectiveness of the proposed proxy model, two case studies involving four injection and nine production wells within two-dimensional (2D) and three-dimensional (3D) non-homogeneous reservoirs were conducted, with the R2 coefficient serving as the primary evaluation metric. As the number of training iterations and data volume increase, the proxy model demonstrates rapid convergence. In tests conducted on the 2D and 3D datasets, the average R2 value exceeded 0.96 and 0.94. These results confirm the accuracy and stability of the proxy model. It also shows that the proxy model can accurately describe the geological and fluid seepage characteristics of the reservoir, which in turn can achieve a highly accurate match with the real data. In addition, the computational time is reduced by two orders of magnitude compared to traditional models. Compared with the long short-term memory method, the accuracy of the prediction results is increased by 30%, which greatly enhances efficiency and accuracy. To some extent, the presented proxy model can provide some guidance for the efficient history match of production data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼仔发布了新的文献求助20
1秒前
1秒前
李健应助33采纳,获得30
1秒前
2秒前
淡淡向卉发布了新的文献求助10
2秒前
诸天真发布了新的文献求助80
2秒前
2秒前
2秒前
亮总发布了新的文献求助10
2秒前
土豪的念梦完成签到,获得积分10
2秒前
emmaguo713发布了新的文献求助10
2秒前
刘钊扬完成签到,获得积分10
3秒前
3秒前
Twonej应助haaappy采纳,获得40
3秒前
善学以致用应助LuciusHe采纳,获得30
4秒前
4秒前
九月鹰飞发布了新的文献求助10
4秒前
sss发布了新的文献求助10
4秒前
4秒前
4秒前
Akim应助fucccboi采纳,获得10
5秒前
英俊的铭应助科研人采纳,获得10
5秒前
5秒前
5秒前
Dasha发布了新的文献求助10
6秒前
6秒前
Pt完成签到,获得积分10
7秒前
彭于晏应助包容的瑾瑜采纳,获得10
7秒前
斯文败类应助正直映梦采纳,获得10
7秒前
英俊的铭应助yy采纳,获得10
7秒前
科研通AI6应助顺顺采纳,获得10
7秒前
靳韩羽完成签到,获得积分10
7秒前
西奥发布了新的文献求助10
7秒前
8秒前
亮总完成签到,获得积分10
8秒前
无风风发布了新的文献求助10
8秒前
losan1120完成签到,获得积分10
8秒前
Rainbow16发布了新的文献求助10
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721