高斯过程
控制理论(社会学)
联轴节(管道)
非参数统计
过程(计算)
计算机科学
系统标识
鉴定(生物学)
识别方案
梯度下降
水下
算法
高斯分布
非线性系统
数学
工程类
数据建模
人工智能
人工神经网络
统计
海洋学
操作系统
生物
机械工程
物理
地质学
数据库
量子力学
植物
控制(管理)
作者
Linyu Guo,Boxv Min,Jian Gao,Anyan Jing,Jiarun Wang,Yimin Chen,Guang Pan
标识
DOI:10.1109/usys56283.2022.10072878
摘要
In this paper, a nonparametric system identification algorithm based on a multi-output Gaussian process for underwater gliders is proposed, which can predict the motion of UGs under the conditions of few training data, part measurable states, and high coupling degrees. The algorithm combines the nonlinear auto-regressive model with an external input structure and uses the conjugate gradient descent optimization algorithm to develop a nonparametric dynamic system identification scheme. The proposed scheme is implemented over data obtained from the simulated model of a UG ray-like manta of 5° and 10° Z-type steering data. The results show that the root means square errors of the prediction motion are less than 0.01500° compared with the real motion, and the multi-output Gaussian process can be accurately applied to the strong coupling, multi-degree-of-freedom (DOF) of the underwater gliders.
科研通智能强力驱动
Strongly Powered by AbleSci AI