Automated Breast Cancer Classification based on Modified Deep learning Convolutional Neural Network following Dual Segmentation

人工智能 计算机科学 分割 支持向量机 卷积神经网络 模式识别(心理学) 人工神经网络 乳腺癌 深度学习 图像分割 机器学习 癌症 医学 内科学
作者
G. Sajiv,G. Ramkumar
标识
DOI:10.1109/icesc54411.2022.9885299
摘要

As soon as possible, breast cancer must be diagnosed and treated. Deep learning-based breast cancer classification and segmentation approaches are introduced in this research. A novel computer-aided detection method is described for the classification of normal and malignant mass tumors. This system employs two types of segmentation. The first approach relies on manually determining the ROI, whereas the second makes use of thresholds and a region-based strategy. An AlexNet DCNN framework is used to extract features and categories two kinds of data. Support vector machine classifiers are plugged into the final layer for better accuracy. A high accuracy rate is achieved through training on a vast amount of data. Despite this, due to patient capacity limitations, biomedical databases contain a relatively smaller sample. Thus, image enhancement may be used to increase the amount and quality of input data. Data augmentation may be done in a variety of ways, but rotation is the one used here. Analyzing both types of sample segmentation yielded similar results, the maximum area under the curve (AUC) was 0.88 (88 percent) and the DCNN's accuracy is raised to 88.6 percent. As a result, the SVM accuracy increases to 94.2 percent, with an AUC of 0.94. (94 percent). When compared to earlier work under the identical conditions, this is the greatest AUC value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
4秒前
SciGPT应助周亭采纳,获得80
5秒前
ornot君君发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
阿凉发布了新的文献求助10
8秒前
香蕉觅云应助怡然小蚂蚁采纳,获得10
8秒前
苹果发布了新的文献求助10
10秒前
可乐发布了新的文献求助10
11秒前
sdh11133发布了新的文献求助10
11秒前
123完成签到,获得积分10
11秒前
或无情完成签到 ,获得积分10
13秒前
13秒前
小木木壮完成签到,获得积分10
14秒前
淡定的鸭子完成签到,获得积分10
14秒前
马小马完成签到,获得积分10
16秒前
木偶完成签到 ,获得积分10
17秒前
Chara_kara发布了新的文献求助10
18秒前
善学以致用应助影子采纳,获得10
20秒前
aeiou完成签到,获得积分10
20秒前
20秒前
可乐完成签到,获得积分10
21秒前
在水一方应助zk采纳,获得30
21秒前
云飞扬应助科研通管家采纳,获得10
22秒前
yznfly应助科研通管家采纳,获得30
22秒前
晴天发布了新的文献求助10
22秒前
田様应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
dong应助科研通管家采纳,获得10
22秒前
yznfly应助科研通管家采纳,获得30
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
yznfly应助科研通管家采纳,获得30
22秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959091
求助须知:如何正确求助?哪些是违规求助? 3505434
关于积分的说明 11123675
捐赠科研通 3237077
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821