饱和(图论)
传热
石油工程
联轴节(管道)
机械
热的
流量(数学)
环境科学
体积流量
材料科学
电磁场
石油生产
地质学
热力学
物理
复合材料
量子力学
数学
组合数学
作者
Hong-Wei Chen,Shanshan Zhang,Yang Li,Chen Xu,Jin-Yuan Liang
标识
DOI:10.1080/15567036.2022.2123997
摘要
Electromagnetic (EM) heating is an advanced technology that can improve the oil recovery rate. Previous studies usually focus on the coupling of EM and thermal reservoir models, with little attention to multi-phase flow in EM heating. In order to accurately analyze the heat and mass transfer in the reservoir under EM heating, this work developed an advanced model coupling the EM-temperature-seepage fields, in which the variation of the physical properties of heavy oil reservoirs has been considered. In addition, the influence of the EM heating factors is also analyzed. The results show a significant saturation partitioning in the heat and mass transfer in heavy oil reservoirs under EM heating, and heavy oil flows more rapidly in areas of high oil saturation. Increasing the EM frequency and power can extend the heating range of the reservoir, but it can cause a dramatic rise in the temperature of the antenna. When the temperature of the production well induces heavy oil flow, increasing the production pressure can significantly improve output. The average flow rate of heavy oil at the producing well increased by 17.61% when the bottom flow pressure decreased from 19 MPa to 17 MPa. The study of the distance between the production well and the antenna finds that the average temperature of the production well is only 463.06 K when the antenna spacing is 15 m. Compared with other situations, 10 m is the most suitable for efficient and continuous exploitation of heavy oil.
科研通智能强力驱动
Strongly Powered by AbleSci AI