The steady increase in the carbon dioxide (CO 2 ) concentration in the atmosphere is causing serious environmental threats like global warming and climate change. Thus to mitigate this issue, suitable adsorbent cum catalyst for high CO 2 capture and its fixation to reactive organics is very much essential. In this context, we have synthesized a new porous cross-linked organic polymer DAT-1 through the radical polymerization of divinylbenzene, triallylamine and 2,4,6-tris(allyloxy)− 1,3,5-triazine. DAT-1 possesses high degree of flexibility, with exceptionally large BET surface area (1105 m 2 g −1 ) along with bimodal porosity. Furthermore, due to the presence of triazine unit along with tertiary amine moieties inside the porous architecture of DAT-1 with very rich in basic N-sites could make it as an excellent adsorbent for the unprecedented CO 2 capture (73.3 mmol g −1 at 30 bar pressure / 273 K). Further, it exhibits excellent catalytic activity for the conversion of simple terminal epoxides to bio-derived sterically hindered epoxides to cyclic carbonate by utilizing carbon dioxide as C1 resource. Basicity associated with N-rich sites at the surface of the high surface area porous organic polymer is responsible for record CO 2 capture and its excellent catalytic activity for the CO 2 fixation on epoxides for the synthesis of value added cyclic carbonates. We report a new porous organic polymer with record high CO 2 capture (73.3 mmol g −1 at 30 bar pressure / 273 K). Further, it exhibits excellent catalytic activity for the conversion of epoxides to respective cyclic carbonates by utilizing CO 2 as C1 resource. • A new porous organic polymer DAT-1 has been synthesized through the polymerization of three olefines. • DAT-1 possesses exceptionally large BET surface area (1105 m 2 g −1 ) along with bimodal porosity. • DAT-1 displayed unprecedented CO 2 capture (73.3 mmol g −1 at 30 bar pressure / 273 K). • DAT-1 showed excellent catalytic activity for the synthesis of cyclic carbonates via cycloaddition of CO2 on epoxides. • Basicity due to N-rich sites and high surface area are responsible for record CO 2 capture and high catalytic activity.