An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images

目标检测 人工智能 计算机科学 特征提取 航空影像 计算机视觉 对象(语法) 特征(语言学) 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Jiaquan Shen,Wangcheng Zhou,Ningzhong Liu,Han Sun,Deguang Li,Yongxin Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24330-24342 被引量:12
标识
DOI:10.1109/tits.2022.3203715
摘要

Vehicle object detection in aerial scenes has important applications in both military and civilian fields. Recently, deep learning has shown clear advantages in object detection, and the detection performance has been continuously improved. However, these deep object detection algorithms rely on anchor-based approaches accompanied by complex convolutional operations. In this paper, we establish a lightweight aerial vehicle object detection algorithm based on the method of anchor-free. The anchor-free based object detection method effectively gets rid of the limitation of detection model capability by the size of fixed anchor box, which reduces the set of parameters and provides a more flexible solution space. In addition, the proposed lightweight object feature extraction network effectively reduces the computational cost of the model, while improving the feature extraction capability of small objects. Besides, we use channel stacking to improve the object feature extraction capability of the lightweight network, and introduce the attention mechanism in the detection model to improve the efficiency of resource utilization. We evaluate the proposed detection algorithm on both the public aerial dataset and our collected aerial dataset, and the results show that our algorithm has significant advantages over other detection algorithms in detection accuracy and efficiency. The proposed detection algorithm achieves 89.1% and 92.6% mAP on the Munich dataset and the created dataset, and the detection time for each image is 1.21s and 0.036s, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听的小之完成签到 ,获得积分10
刚刚
Orange应助ww采纳,获得10
1秒前
风筝鱼完成签到 ,获得积分10
2秒前
2秒前
搜集达人应助想逃离采纳,获得10
2秒前
2秒前
大头完成签到 ,获得积分10
3秒前
高灵雨完成签到,获得积分10
3秒前
顾矜应助丽娜采纳,获得50
4秒前
Alan完成签到,获得积分10
4秒前
4秒前
AMENG完成签到,获得积分10
5秒前
lqy完成签到,获得积分10
5秒前
5秒前
XIAXIA完成签到,获得积分10
5秒前
何晶晶完成签到 ,获得积分10
5秒前
浮游应助wj18637196763采纳,获得10
5秒前
加油呀发布了新的文献求助30
6秒前
lemonyu发布了新的文献求助10
6秒前
科研通AI6应助tutu采纳,获得10
7秒前
7秒前
9秒前
嘿嘿发布了新的文献求助10
9秒前
李健的小迷弟应助叶子采纳,获得10
9秒前
9秒前
9秒前
浅色西完成签到,获得积分10
10秒前
yy发布了新的文献求助20
10秒前
Yxxxxxxx完成签到,获得积分10
10秒前
11秒前
XIAXIA发布了新的文献求助10
11秒前
共享精神应助学术蟑螂采纳,获得10
11秒前
12秒前
chenxi发布了新的文献求助30
12秒前
12秒前
12秒前
淡然绝山发布了新的文献求助10
13秒前
sanyue完成签到,获得积分10
14秒前
王睿发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798