An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images

目标检测 人工智能 计算机科学 特征提取 航空影像 计算机视觉 对象(语法) 特征(语言学) 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Jiaquan Shen,Wangcheng Zhou,Ningzhong Liu,Han Sun,Deguang Li,Yongxin Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24330-24342 被引量:12
标识
DOI:10.1109/tits.2022.3203715
摘要

Vehicle object detection in aerial scenes has important applications in both military and civilian fields. Recently, deep learning has shown clear advantages in object detection, and the detection performance has been continuously improved. However, these deep object detection algorithms rely on anchor-based approaches accompanied by complex convolutional operations. In this paper, we establish a lightweight aerial vehicle object detection algorithm based on the method of anchor-free. The anchor-free based object detection method effectively gets rid of the limitation of detection model capability by the size of fixed anchor box, which reduces the set of parameters and provides a more flexible solution space. In addition, the proposed lightweight object feature extraction network effectively reduces the computational cost of the model, while improving the feature extraction capability of small objects. Besides, we use channel stacking to improve the object feature extraction capability of the lightweight network, and introduce the attention mechanism in the detection model to improve the efficiency of resource utilization. We evaluate the proposed detection algorithm on both the public aerial dataset and our collected aerial dataset, and the results show that our algorithm has significant advantages over other detection algorithms in detection accuracy and efficiency. The proposed detection algorithm achieves 89.1% and 92.6% mAP on the Munich dataset and the created dataset, and the detection time for each image is 1.21s and 0.036s, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助RUI采纳,获得10
刚刚
1秒前
科研通AI6应助江水月采纳,获得10
1秒前
Ryan完成签到,获得积分10
1秒前
獭祭鱼发布了新的文献求助10
1秒前
supering11发布了新的文献求助10
1秒前
2秒前
科研通AI6应助考研的青蛙采纳,获得10
2秒前
2秒前
2秒前
夹心发布了新的文献求助10
3秒前
1397完成签到 ,获得积分10
3秒前
4秒前
5秒前
李爱国应助陈陈好吃呢采纳,获得10
5秒前
研友_VZG7GZ应助yoozii采纳,获得30
5秒前
ds完成签到,获得积分10
5秒前
111发布了新的文献求助10
6秒前
6秒前
7秒前
研小白发布了新的文献求助10
7秒前
7秒前
supering11完成签到,获得积分10
7秒前
晨风韵雨完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
呆呆发布了新的文献求助10
9秒前
冬菊完成签到 ,获得积分10
9秒前
蓝天黄土发布了新的文献求助20
10秒前
摆烂小鱼鱼完成签到 ,获得积分10
10秒前
Orange应助健忘芷采纳,获得10
10秒前
月星发布了新的文献求助10
10秒前
丘比特应助小丁要努力采纳,获得10
11秒前
11秒前
RUI发布了新的文献求助10
11秒前
11秒前
Min完成签到,获得积分10
11秒前
獭祭鱼完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618686
求助须知:如何正确求助?哪些是违规求助? 4703697
关于积分的说明 14923247
捐赠科研通 4758321
什么是DOI,文献DOI怎么找? 2550231
邀请新用户注册赠送积分活动 1513010
关于科研通互助平台的介绍 1474379