An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images

目标检测 人工智能 计算机科学 特征提取 航空影像 计算机视觉 对象(语法) 特征(语言学) 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Jiaquan Shen,Wangcheng Zhou,Ningzhong Liu,Han Sun,Deguang Li,Yongxin Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24330-24342 被引量:12
标识
DOI:10.1109/tits.2022.3203715
摘要

Vehicle object detection in aerial scenes has important applications in both military and civilian fields. Recently, deep learning has shown clear advantages in object detection, and the detection performance has been continuously improved. However, these deep object detection algorithms rely on anchor-based approaches accompanied by complex convolutional operations. In this paper, we establish a lightweight aerial vehicle object detection algorithm based on the method of anchor-free. The anchor-free based object detection method effectively gets rid of the limitation of detection model capability by the size of fixed anchor box, which reduces the set of parameters and provides a more flexible solution space. In addition, the proposed lightweight object feature extraction network effectively reduces the computational cost of the model, while improving the feature extraction capability of small objects. Besides, we use channel stacking to improve the object feature extraction capability of the lightweight network, and introduce the attention mechanism in the detection model to improve the efficiency of resource utilization. We evaluate the proposed detection algorithm on both the public aerial dataset and our collected aerial dataset, and the results show that our algorithm has significant advantages over other detection algorithms in detection accuracy and efficiency. The proposed detection algorithm achieves 89.1% and 92.6% mAP on the Munich dataset and the created dataset, and the detection time for each image is 1.21s and 0.036s, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
456完成签到,获得积分10
1秒前
852应助Huang采纳,获得10
1秒前
爆米花应助Ryo采纳,获得10
1秒前
1秒前
chen完成签到,获得积分10
2秒前
小瑞发布了新的文献求助10
2秒前
共享精神应助TY采纳,获得10
3秒前
haimianbaobao完成签到 ,获得积分10
3秒前
情怀应助sghsh采纳,获得10
3秒前
科研通AI6应助dongjingbutaire采纳,获得10
3秒前
456发布了新的文献求助10
3秒前
kkk完成签到,获得积分10
3秒前
Cynthia发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
宣千易发布了新的文献求助10
5秒前
柔弱的便当完成签到,获得积分10
5秒前
年轻的问兰完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
彭于晏应助Jasmine采纳,获得10
6秒前
6秒前
Orange应助little_forest采纳,获得10
7秒前
小火孩发布了新的文献求助10
7秒前
大个应助顺利的奇异果采纳,获得10
7秒前
酷波er应助herdwind采纳,获得10
8秒前
8秒前
Lucas应助维洛尼亚采纳,获得10
8秒前
无极微光应助HEANZ采纳,获得20
8秒前
liao应助美好斓采纳,获得10
9秒前
单薄不惜完成签到,获得积分10
9秒前
汐风完成签到,获得积分10
9秒前
9秒前
10秒前
隐形曼青应助acuter采纳,获得30
10秒前
10秒前
kakoi完成签到,获得积分20
10秒前
小唐完成签到,获得积分20
10秒前
大模型应助Goyounjung采纳,获得10
10秒前
wanci应助小太阳采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210