An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images

目标检测 人工智能 计算机科学 特征提取 航空影像 计算机视觉 对象(语法) 特征(语言学) 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Jiaquan Shen,Wangcheng Zhou,Ningzhong Liu,Han Sun,Deguang Li,Yongxin Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24330-24342 被引量:12
标识
DOI:10.1109/tits.2022.3203715
摘要

Vehicle object detection in aerial scenes has important applications in both military and civilian fields. Recently, deep learning has shown clear advantages in object detection, and the detection performance has been continuously improved. However, these deep object detection algorithms rely on anchor-based approaches accompanied by complex convolutional operations. In this paper, we establish a lightweight aerial vehicle object detection algorithm based on the method of anchor-free. The anchor-free based object detection method effectively gets rid of the limitation of detection model capability by the size of fixed anchor box, which reduces the set of parameters and provides a more flexible solution space. In addition, the proposed lightweight object feature extraction network effectively reduces the computational cost of the model, while improving the feature extraction capability of small objects. Besides, we use channel stacking to improve the object feature extraction capability of the lightweight network, and introduce the attention mechanism in the detection model to improve the efficiency of resource utilization. We evaluate the proposed detection algorithm on both the public aerial dataset and our collected aerial dataset, and the results show that our algorithm has significant advantages over other detection algorithms in detection accuracy and efficiency. The proposed detection algorithm achieves 89.1% and 92.6% mAP on the Munich dataset and the created dataset, and the detection time for each image is 1.21s and 0.036s, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助cy采纳,获得10
刚刚
1秒前
3秒前
3秒前
3秒前
3秒前
4秒前
严好香完成签到 ,获得积分10
4秒前
4秒前
5秒前
长度2到发布了新的文献求助10
6秒前
6秒前
hyman1218发布了新的文献求助50
6秒前
君子扑火完成签到,获得积分10
6秒前
淡定的勒完成签到,获得积分10
7秒前
7秒前
浅笑_随风发布了新的文献求助10
7秒前
yinzenglinnn发布了新的文献求助10
7秒前
7秒前
zhangguo发布了新的文献求助100
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
李健应助完美平灵采纳,获得10
8秒前
8秒前
8秒前
打打应助konoraha采纳,获得10
8秒前
neufy发布了新的文献求助10
8秒前
nighwalk发布了新的文献求助10
9秒前
豌豆射手发布了新的文献求助10
9秒前
9秒前
10秒前
caocao发布了新的文献求助10
10秒前
孤独的远山完成签到,获得积分10
10秒前
缓慢千易完成签到 ,获得积分10
11秒前
rabpig完成签到,获得积分10
11秒前
畅快的寻凝完成签到,获得积分10
11秒前
今后应助third采纳,获得10
11秒前
无期发布了新的文献求助10
11秒前
mookie发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515