An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images

目标检测 人工智能 计算机科学 特征提取 航空影像 计算机视觉 对象(语法) 特征(语言学) 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Jiaquan Shen,Wangcheng Zhou,Ningzhong Liu,Han Sun,Deguang Li,Yongxin Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24330-24342 被引量:12
标识
DOI:10.1109/tits.2022.3203715
摘要

Vehicle object detection in aerial scenes has important applications in both military and civilian fields. Recently, deep learning has shown clear advantages in object detection, and the detection performance has been continuously improved. However, these deep object detection algorithms rely on anchor-based approaches accompanied by complex convolutional operations. In this paper, we establish a lightweight aerial vehicle object detection algorithm based on the method of anchor-free. The anchor-free based object detection method effectively gets rid of the limitation of detection model capability by the size of fixed anchor box, which reduces the set of parameters and provides a more flexible solution space. In addition, the proposed lightweight object feature extraction network effectively reduces the computational cost of the model, while improving the feature extraction capability of small objects. Besides, we use channel stacking to improve the object feature extraction capability of the lightweight network, and introduce the attention mechanism in the detection model to improve the efficiency of resource utilization. We evaluate the proposed detection algorithm on both the public aerial dataset and our collected aerial dataset, and the results show that our algorithm has significant advantages over other detection algorithms in detection accuracy and efficiency. The proposed detection algorithm achieves 89.1% and 92.6% mAP on the Munich dataset and the created dataset, and the detection time for each image is 1.21s and 0.036s, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个人的朝圣完成签到,获得积分10
刚刚
Janice完成签到,获得积分10
刚刚
Clark完成签到,获得积分0
刚刚
刚刚
缓慢的冬云完成签到,获得积分0
1秒前
小猪找库里完成签到,获得积分10
1秒前
阿白完成签到,获得积分10
2秒前
2秒前
积极的千琴完成签到,获得积分10
3秒前
WYN完成签到,获得积分10
3秒前
nyfz2002完成签到,获得积分10
3秒前
5秒前
鱼大大发布了新的文献求助10
5秒前
正直的爆米花完成签到 ,获得积分10
6秒前
lidada完成签到,获得积分10
6秒前
孟祥勤完成签到,获得积分10
7秒前
TW完成签到,获得积分10
7秒前
猫尔儿完成签到,获得积分10
8秒前
马超放烟花完成签到 ,获得积分10
9秒前
zrz完成签到,获得积分10
9秒前
9秒前
俭朴士晋发布了新的文献求助10
9秒前
11秒前
安然无恙完成签到,获得积分10
11秒前
LYL完成签到,获得积分10
11秒前
He完成签到,获得积分10
12秒前
12秒前
沫星发布了新的文献求助10
12秒前
邪恶青年完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
沉静念烟完成签到,获得积分10
13秒前
13秒前
kk完成签到,获得积分10
13秒前
ZYN完成签到 ,获得积分10
14秒前
Carly完成签到,获得积分10
15秒前
yunjian1583完成签到,获得积分10
15秒前
15秒前
15秒前
黑炭球完成签到,获得积分10
15秒前
1223完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451