亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images

目标检测 人工智能 计算机科学 特征提取 航空影像 计算机视觉 对象(语法) 特征(语言学) 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Jiaquan Shen,Wangcheng Zhou,Ningzhong Liu,Han Sun,Deguang Li,Yongxin Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24330-24342 被引量:12
标识
DOI:10.1109/tits.2022.3203715
摘要

Vehicle object detection in aerial scenes has important applications in both military and civilian fields. Recently, deep learning has shown clear advantages in object detection, and the detection performance has been continuously improved. However, these deep object detection algorithms rely on anchor-based approaches accompanied by complex convolutional operations. In this paper, we establish a lightweight aerial vehicle object detection algorithm based on the method of anchor-free. The anchor-free based object detection method effectively gets rid of the limitation of detection model capability by the size of fixed anchor box, which reduces the set of parameters and provides a more flexible solution space. In addition, the proposed lightweight object feature extraction network effectively reduces the computational cost of the model, while improving the feature extraction capability of small objects. Besides, we use channel stacking to improve the object feature extraction capability of the lightweight network, and introduce the attention mechanism in the detection model to improve the efficiency of resource utilization. We evaluate the proposed detection algorithm on both the public aerial dataset and our collected aerial dataset, and the results show that our algorithm has significant advantages over other detection algorithms in detection accuracy and efficiency. The proposed detection algorithm achieves 89.1% and 92.6% mAP on the Munich dataset and the created dataset, and the detection time for each image is 1.21s and 0.036s, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地理牛马完成签到 ,获得积分10
11秒前
慧灰huihui完成签到,获得积分10
15秒前
酷波er应助慧灰huihui采纳,获得10
18秒前
可耐的远侵完成签到 ,获得积分20
22秒前
obedVL完成签到,获得积分10
34秒前
cuicui完成签到,获得积分10
54秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
1分钟前
一只鲨呱发布了新的文献求助10
1分钟前
追寻依波完成签到,获得积分10
1分钟前
1分钟前
yishujia发布了新的文献求助30
1分钟前
活力广缘发布了新的文献求助20
1分钟前
Y123发布了新的文献求助10
1分钟前
xaopng完成签到,获得积分10
1分钟前
爆米花应助shier采纳,获得10
1分钟前
活力广缘完成签到,获得积分10
1分钟前
左传琦完成签到 ,获得积分10
1分钟前
NOTHING完成签到 ,获得积分10
1分钟前
1分钟前
吞吞完成签到 ,获得积分10
1分钟前
慧灰huihui发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
英俊的铭应助慧灰huihui采纳,获得10
1分钟前
Jy完成签到 ,获得积分10
2分钟前
curtain完成签到,获得积分10
2分钟前
清飏应助karstbing采纳,获得220
2分钟前
田様应助Y123采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Y123发布了新的文献求助10
2分钟前
3分钟前
领导范儿应助Y123采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634800
求助须知:如何正确求助?哪些是违规求助? 4733832
关于积分的说明 14989260
捐赠科研通 4792487
什么是DOI,文献DOI怎么找? 2559621
邀请新用户注册赠送积分活动 1519959
关于科研通互助平台的介绍 1480023