An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images

目标检测 人工智能 计算机科学 特征提取 航空影像 计算机视觉 对象(语法) 特征(语言学) 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Jiaquan Shen,Wangcheng Zhou,Ningzhong Liu,Han Sun,Deguang Li,Yongxin Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24330-24342 被引量:12
标识
DOI:10.1109/tits.2022.3203715
摘要

Vehicle object detection in aerial scenes has important applications in both military and civilian fields. Recently, deep learning has shown clear advantages in object detection, and the detection performance has been continuously improved. However, these deep object detection algorithms rely on anchor-based approaches accompanied by complex convolutional operations. In this paper, we establish a lightweight aerial vehicle object detection algorithm based on the method of anchor-free. The anchor-free based object detection method effectively gets rid of the limitation of detection model capability by the size of fixed anchor box, which reduces the set of parameters and provides a more flexible solution space. In addition, the proposed lightweight object feature extraction network effectively reduces the computational cost of the model, while improving the feature extraction capability of small objects. Besides, we use channel stacking to improve the object feature extraction capability of the lightweight network, and introduce the attention mechanism in the detection model to improve the efficiency of resource utilization. We evaluate the proposed detection algorithm on both the public aerial dataset and our collected aerial dataset, and the results show that our algorithm has significant advantages over other detection algorithms in detection accuracy and efficiency. The proposed detection algorithm achieves 89.1% and 92.6% mAP on the Munich dataset and the created dataset, and the detection time for each image is 1.21s and 0.036s, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星星boy完成签到,获得积分10
1秒前
李爱国应助萍萍采纳,获得10
1秒前
伯克利芙蓉王应助卡卡采纳,获得10
2秒前
2秒前
3秒前
4秒前
5秒前
5秒前
CC发布了新的文献求助10
7秒前
ever完成签到,获得积分10
7秒前
zycdx3906发布了新的文献求助10
8秒前
8秒前
9秒前
初见发布了新的文献求助10
10秒前
猪猪hero发布了新的文献求助10
12秒前
12秒前
AA18236931952发布了新的文献求助10
12秒前
卡卡完成签到,获得积分10
13秒前
zycdx3906完成签到,获得积分10
14秒前
Marcus完成签到,获得积分10
16秒前
闵松岳发布了新的文献求助10
16秒前
19秒前
shhoing应助卡卡采纳,获得10
19秒前
李嘉衡完成签到 ,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
852应助yydd采纳,获得10
21秒前
科研通AI2S应助ikuaikuai采纳,获得10
22秒前
zzyytt完成签到,获得积分10
22秒前
25秒前
若水完成签到 ,获得积分10
25秒前
26秒前
顺利完成签到,获得积分10
27秒前
彭于晏应助a.........采纳,获得10
29秒前
大模型应助黎敏采纳,获得10
29秒前
Kannan发布了新的文献求助10
29秒前
29秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123