An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images

目标检测 人工智能 计算机科学 特征提取 航空影像 计算机视觉 对象(语法) 特征(语言学) 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Jiaquan Shen,Wangcheng Zhou,Ningzhong Liu,Han Sun,Deguang Li,Yongxin Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24330-24342 被引量:12
标识
DOI:10.1109/tits.2022.3203715
摘要

Vehicle object detection in aerial scenes has important applications in both military and civilian fields. Recently, deep learning has shown clear advantages in object detection, and the detection performance has been continuously improved. However, these deep object detection algorithms rely on anchor-based approaches accompanied by complex convolutional operations. In this paper, we establish a lightweight aerial vehicle object detection algorithm based on the method of anchor-free. The anchor-free based object detection method effectively gets rid of the limitation of detection model capability by the size of fixed anchor box, which reduces the set of parameters and provides a more flexible solution space. In addition, the proposed lightweight object feature extraction network effectively reduces the computational cost of the model, while improving the feature extraction capability of small objects. Besides, we use channel stacking to improve the object feature extraction capability of the lightweight network, and introduce the attention mechanism in the detection model to improve the efficiency of resource utilization. We evaluate the proposed detection algorithm on both the public aerial dataset and our collected aerial dataset, and the results show that our algorithm has significant advantages over other detection algorithms in detection accuracy and efficiency. The proposed detection algorithm achieves 89.1% and 92.6% mAP on the Munich dataset and the created dataset, and the detection time for each image is 1.21s and 0.036s, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助大橙子采纳,获得10
1秒前
sfsfes应助ABC采纳,获得10
1秒前
SciGPT应助强公子采纳,获得10
1秒前
RXY完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
明明完成签到,获得积分10
5秒前
求知的周完成签到,获得积分10
5秒前
6秒前
柒柒球完成签到,获得积分10
6秒前
赵田完成签到 ,获得积分10
7秒前
7秒前
长安完成签到,获得积分10
11秒前
大橙子发布了新的文献求助10
12秒前
在水一方应助Herisland采纳,获得10
14秒前
笨笨小刺猬完成签到,获得积分10
16秒前
16秒前
科研小达人完成签到,获得积分10
19秒前
追寻凌青完成签到,获得积分10
21秒前
渡劫完成签到,获得积分10
22秒前
丫丫完成签到 ,获得积分10
22秒前
lxy发布了新的文献求助10
23秒前
bono完成签到 ,获得积分10
26秒前
DentistRui完成签到,获得积分10
26秒前
28秒前
laber应助忧伤的步美采纳,获得50
31秒前
淡淡月饼发布了新的文献求助20
32秒前
茶茶应助虞无声采纳,获得50
32秒前
大橙子发布了新的文献求助10
34秒前
wangnn完成签到,获得积分10
35秒前
xzz完成签到,获得积分10
37秒前
阿绿发布了新的文献求助10
41秒前
42秒前
量子星尘发布了新的文献求助10
42秒前
manman完成签到 ,获得积分20
45秒前
太清完成签到,获得积分10
49秒前
山雀完成签到,获得积分10
51秒前
伊一完成签到,获得积分10
53秒前
哭泣笑柳发布了新的文献求助10
59秒前
琳琅发布了新的文献求助10
1分钟前
xue完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022