An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images

目标检测 人工智能 计算机科学 特征提取 航空影像 计算机视觉 对象(语法) 特征(语言学) 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Jiaquan Shen,Wangcheng Zhou,Ningzhong Liu,Han Sun,Deguang Li,Yongxin Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24330-24342 被引量:12
标识
DOI:10.1109/tits.2022.3203715
摘要

Vehicle object detection in aerial scenes has important applications in both military and civilian fields. Recently, deep learning has shown clear advantages in object detection, and the detection performance has been continuously improved. However, these deep object detection algorithms rely on anchor-based approaches accompanied by complex convolutional operations. In this paper, we establish a lightweight aerial vehicle object detection algorithm based on the method of anchor-free. The anchor-free based object detection method effectively gets rid of the limitation of detection model capability by the size of fixed anchor box, which reduces the set of parameters and provides a more flexible solution space. In addition, the proposed lightweight object feature extraction network effectively reduces the computational cost of the model, while improving the feature extraction capability of small objects. Besides, we use channel stacking to improve the object feature extraction capability of the lightweight network, and introduce the attention mechanism in the detection model to improve the efficiency of resource utilization. We evaluate the proposed detection algorithm on both the public aerial dataset and our collected aerial dataset, and the results show that our algorithm has significant advantages over other detection algorithms in detection accuracy and efficiency. The proposed detection algorithm achieves 89.1% and 92.6% mAP on the Munich dataset and the created dataset, and the detection time for each image is 1.21s and 0.036s, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Will发布了新的文献求助10
刚刚
Rjy发布了新的文献求助10
刚刚
123456发布了新的文献求助10
刚刚
刚刚
AIO发布了新的文献求助10
刚刚
欢呼的念瑶完成签到,获得积分10
1秒前
1秒前
徐木木发布了新的文献求助10
2秒前
Lee发布了新的文献求助30
2秒前
min完成签到,获得积分10
2秒前
2秒前
HX发布了新的文献求助10
2秒前
2秒前
斯文败类应助默默的橘子采纳,获得10
2秒前
万能图书馆应助Rngf_eeei采纳,获得10
3秒前
Tera完成签到,获得积分10
3秒前
meo应助PMME采纳,获得10
3秒前
最最完成签到,获得积分10
4秒前
zhangyapeng完成签到,获得积分10
4秒前
陈末应助雪山飞龙采纳,获得10
4秒前
halabouqii发布了新的文献求助10
5秒前
5秒前
6秒前
浅念关注了科研通微信公众号
6秒前
咖褐发布了新的文献求助10
6秒前
祖诗云完成签到,获得积分10
6秒前
小蘑菇应助璟晔采纳,获得10
7秒前
zybbb发布了新的文献求助10
7秒前
魏京京完成签到,获得积分10
7秒前
7秒前
小蘑菇应助Sylvia采纳,获得10
7秒前
yaya完成签到,获得积分10
7秒前
哇奥发布了新的文献求助10
8秒前
阿莫西西林完成签到,获得积分10
8秒前
潘多拉完成签到,获得积分10
8秒前
赘婿应助认真的TOTORO采纳,获得10
8秒前
dxannie完成签到,获得积分10
8秒前
我是老大应助熊熊熊采纳,获得10
9秒前
9秒前
唠叨的秋蝶完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572