An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images

目标检测 人工智能 计算机科学 特征提取 航空影像 计算机视觉 对象(语法) 特征(语言学) 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Jiaquan Shen,Wangcheng Zhou,Ningzhong Liu,Han Sun,Deguang Li,Yongxin Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24330-24342 被引量:12
标识
DOI:10.1109/tits.2022.3203715
摘要

Vehicle object detection in aerial scenes has important applications in both military and civilian fields. Recently, deep learning has shown clear advantages in object detection, and the detection performance has been continuously improved. However, these deep object detection algorithms rely on anchor-based approaches accompanied by complex convolutional operations. In this paper, we establish a lightweight aerial vehicle object detection algorithm based on the method of anchor-free. The anchor-free based object detection method effectively gets rid of the limitation of detection model capability by the size of fixed anchor box, which reduces the set of parameters and provides a more flexible solution space. In addition, the proposed lightweight object feature extraction network effectively reduces the computational cost of the model, while improving the feature extraction capability of small objects. Besides, we use channel stacking to improve the object feature extraction capability of the lightweight network, and introduce the attention mechanism in the detection model to improve the efficiency of resource utilization. We evaluate the proposed detection algorithm on both the public aerial dataset and our collected aerial dataset, and the results show that our algorithm has significant advantages over other detection algorithms in detection accuracy and efficiency. The proposed detection algorithm achieves 89.1% and 92.6% mAP on the Munich dataset and the created dataset, and the detection time for each image is 1.21s and 0.036s, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spc68应助果冻采纳,获得10
刚刚
刚刚
orixero应助zyyy采纳,获得10
2秒前
华仔应助大大怪将军采纳,获得10
3秒前
幽默的季节完成签到 ,获得积分10
4秒前
orixero应助大白采纳,获得10
4秒前
zm发布了新的文献求助10
5秒前
5秒前
senli2018发布了新的文献求助10
6秒前
落霞应助又发了NSC采纳,获得10
6秒前
瞿琼瑶完成签到,获得积分10
6秒前
6秒前
6秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
李健应助欢乐采纳,获得10
11秒前
11秒前
科研通AI6应助fafa采纳,获得10
12秒前
12秒前
科研通AI6应助松哥采纳,获得10
13秒前
斯文渊思完成签到,获得积分10
14秒前
瞿琼瑶发布了新的文献求助10
14秒前
15秒前
淡定柚子发布了新的文献求助10
15秒前
老实的半莲完成签到,获得积分10
16秒前
16秒前
上官若男应助王诗语采纳,获得10
16秒前
17秒前
科目三应助sleepingcat采纳,获得10
17秒前
17秒前
米奇发布了新的文献求助10
17秒前
17秒前
昭昭完成签到,获得积分10
19秒前
19秒前
springovo发布了新的文献求助10
19秒前
19秒前
小二郎应助心累采纳,获得10
20秒前
漫漫发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598894
求助须知:如何正确求助?哪些是违规求助? 4684330
关于积分的说明 14834478
捐赠科研通 4665294
什么是DOI,文献DOI怎么找? 2537506
邀请新用户注册赠送积分活动 1504958
关于科研通互助平台的介绍 1470655