Detecting High-Risk Factors and Early Diagnosis of Diabetes Using Machine Learning Methods

计算机科学 人工智能 机器学习 预处理器 糖尿病 医学 内分泌学
作者
Zahid Ullah,Farrukh Saleem,Mona Jamjoom,Bahjat Fakieh,Faris A. Kateb,Abdullah Marish Ali,Babar Shah
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-10 被引量:1
标识
DOI:10.1155/2022/2557795
摘要

Diabetes is a chronic disease that can cause several forms of chronic damage to the human body, including heart problems, kidney failure, depression, eye damage, and nerve damage. There are several risk factors involved in causing this disease, with some of the most common being obesity, age, insulin resistance, and hypertension. Therefore, early detection of these risk factors is vital in helping patients reverse diabetes from the early stage to live healthy lives. Machine learning (ML) is a useful tool that can easily detect diabetes from several risk factors and, based on the findings, provide a decision-based model that can help in diagnosing the disease. This study aims to detect the risk factors of diabetes using ML methods and to provide a decision support system for medical practitioners that can help them in diagnosing diabetes. Moreover, besides various other preprocessing steps, this study has used the synthetic minority over-sampling technique integrated with the edited nearest neighbor (SMOTE-ENN) method for balancing the BRFSS dataset. The SMOTE-ENN is a more powerful method than the individual SMOTE method. Several ML methods were applied to the processed BRFSS dataset and built prediction models for detecting the risk factors that can help in diagnosing diabetes patients in the early stage. The prediction models were evaluated using various measures that show the high performance of the models. The experimental results show the reliability of the proposed models, demonstrating that k-nearest neighbor (KNN) outperformed other methods with an accuracy of 98.38%, sensitivity, specificity, and ROC/AUC score of 98%. Moreover, compared with the existing state-of-the-art methods, the results confirm the efficacy of the proposed models in terms of accuracy and other evaluation measures. The use of SMOTE-ENN is more beneficial for balancing the dataset to build more accurate prediction models. This was the main reason it was possible to achieve models more accurate than the existing ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
china1271发布了新的文献求助10
刚刚
刚刚
上官若男应助Luis采纳,获得10
1秒前
啊哈发布了新的文献求助10
5秒前
5秒前
TAO完成签到,获得积分10
7秒前
希望天下0贩的0应助CheeseD采纳,获得10
8秒前
wang发布了新的文献求助10
9秒前
晴天完成签到,获得积分10
9秒前
9秒前
zwy完成签到 ,获得积分10
10秒前
科研通AI6.1应助Cl采纳,获得10
10秒前
11秒前
菜就多练完成签到,获得积分10
13秒前
14秒前
LY发布了新的文献求助10
14秒前
15秒前
称心的白开水完成签到,获得积分10
17秒前
Li完成签到 ,获得积分10
17秒前
哈哈哈哈发布了新的文献求助20
18秒前
fxsg发布了新的文献求助10
18秒前
18秒前
谦让的映容完成签到,获得积分10
18秒前
Luis完成签到,获得积分10
19秒前
斯文败类应助YHL采纳,获得10
20秒前
21秒前
22秒前
从容道罡完成签到,获得积分10
22秒前
Luis发布了新的文献求助10
22秒前
傲娇衬衫发布了新的文献求助10
24秒前
Lucas应助英勇初曼采纳,获得10
24秒前
杨立胜发布了新的文献求助10
25秒前
九天完成签到 ,获得积分0
26秒前
houbin发布了新的文献求助10
27秒前
CodeCraft应助wang采纳,获得10
27秒前
31秒前
NexusExplorer应助yanier采纳,获得10
32秒前
傲娇衬衫完成签到,获得积分10
32秒前
33秒前
yiming完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877825
求助须知:如何正确求助?哪些是违规求助? 6546241
关于积分的说明 15682407
捐赠科研通 4996547
什么是DOI,文献DOI怎么找? 2692754
邀请新用户注册赠送积分活动 1634753
关于科研通互助平台的介绍 1592428