尾矿
收缩率
水泥
材料科学
抗压强度
冶金
多孔性
含水量
岩土工程
复合材料
地质学
作者
Xiaoping Ji,Enyong Sun,Yunlong Sun,Xueyuan Zhang,Tongda Wu
标识
DOI:10.1080/10298436.2022.2124251
摘要
Iron tailings constitute a significant type of industrial solid waste. The use of iron tailings to wholly or partly substitute natural gravel in a cement-stabilized base is an effective technique for high-quality and large-scale use. This study replaced natural gravel with iron tailings of 25%, 50%, 75%, and 100% to develop a cement-stabilized iron tailing base (IT-CSG). Additionally, the drying shrinkage, temperature shrinkage, fatigue properties, and unconfined compressive strength of IT-CSG were investigated. The results reveal that owing to the large porosity of iron tailings and adsorption of more water, the internal water content of the IT-CSG mixture increases with an increase in iron tailings content. Consequently, the cumulative water loss rate of IT-CSG increases, and the drying shrinkage strain increases. The average temperature shrinkage coefficient of IT-CSG gradually increases as the iron tailing content increases owing to the larger porosity and space for temperature shrinkage deformation in the IT-CSG. Therefore, the fatigue equation of IT-CSG is established, indicating that fatigue life decreases slightly with an increase in iron tailing content. Notably, the fatigue life of IT-CSG positively correlates with cement dosage. Furthermore, the unconfined compressive strength of IT-CSG gradually decreases as the iron tailing content increases.
科研通智能强力驱动
Strongly Powered by AbleSci AI