数学
格罗斯-皮塔耶夫斯基方程
对数
数学分析
空格(标点符号)
无穷
非线性薛定谔方程
边值问题
周期边界条件
非线性系统
能量(信号处理)
数学物理
薛定谔方程
物理
量子力学
统计
语言学
哲学
作者
Rémi Carles,Guillaume Ferriere
标识
DOI:10.1080/03605302.2023.2296924
摘要
We consider the Schrödinger equation with a logarithmic nonlinearty and non-trivial boundary conditions at infinity. We prove that the Cauchy problem is globally well posed in the energy space, which turns out to correspond to the energy space for the standard Gross-Pitaevskii equation with a cubic nonlinearity, in small dimensions. We then characterize the solitary and traveling waves in the one dimensional case.
科研通智能强力驱动
Strongly Powered by AbleSci AI