已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Risk prediction for cut-ins using multi-driver simulation data and machine learning algorithms: A comparison among decision tree, GBDT and LSTM

计算机科学 决策树 机器学习 聚类分析 人工智能 Boosting(机器学习) 变量(数学) 树(集合论) 碰撞 数据挖掘 数学 计算机安全 数学分析
作者
Tianyang Luo,Junhua Wang,Ting Fu,Qiangqiang Shangguan,Sheng Fang
出处
期刊:International journal of transportation science and technology [Elsevier]
卷期号:12 (3): 862-877 被引量:2
标识
DOI:10.1016/j.ijtst.2022.12.001
摘要

The cut-ins (one kind of lane-changing behaviors) have result in severe safety issues, especially at the entrances and exits of urban expressways. Risk prediction and characteristics analysis of cut-ins are part of the essential research for advanced in-vehicle technologies which can reduce crash occurrences. This paper makes some efforts on these purposes. In this paper, twenty-four participants were recruited to conduct the experiments of multi-driver simulation for risky driving data collection. The surrogate measures, Time Exposure Time-to-Collision (TET) and Time Integrated Time-to-collision (TIT) were employed to quantify the risk of cut-ins, then k-means clustering was applied for risk classification of 3 levels. Multiple candidate variables of two kinds were extracted including 10 behavioral variables and 7 driver trait variables. Based on these variables, three prediction models including decision tree (DT), gradient boosting decision tree (GBDT) and long short-term memory (LSTM) are used for predicting the risks of cut-ins. Results from data validity verification show that the data collected from multi-driver simulation experiments is valid compared with real-world data. From results of risk prediction models, the LSTM, with an overall accuracy of 87%, outperforms the GBDT (80.67%) and DT (76.9%). Despite this, this paper also concludes the merits of the DT over the GBDT and LSTM in variable explanation and the results of DT suggest that controlling the proper lane-changing gap and short duration of cut-ins can help reduce risks of cut-ins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聴說关注了科研通微信公众号
1秒前
3秒前
王景晨完成签到,获得积分10
4秒前
6秒前
过往之猪发布了新的文献求助10
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
9秒前
lemonyu完成签到 ,获得积分10
14秒前
14秒前
15秒前
16秒前
脑洞疼应助ccq采纳,获得10
16秒前
miwu1232发布了新的文献求助20
16秒前
半颜发布了新的文献求助50
18秒前
缥缈的绝悟完成签到,获得积分10
18秒前
19秒前
amberzyc应助小鹏同学采纳,获得10
20秒前
日月同辉发布了新的文献求助10
20秒前
迅速的谷波关注了科研通微信公众号
20秒前
20秒前
21秒前
Jasper应助陶醉若云采纳,获得10
21秒前
高等数学完成签到,获得积分10
23秒前
23秒前
英勇安筠发布了新的文献求助10
24秒前
胡晓明完成签到,获得积分10
24秒前
24秒前
25秒前
彭于晏应助易未采纳,获得10
26秒前
慈祥的碧发布了新的文献求助10
28秒前
29秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584366
求助须知:如何正确求助?哪些是违规求助? 4667919
关于积分的说明 14770159
捐赠科研通 4610426
什么是DOI,文献DOI怎么找? 2529801
邀请新用户注册赠送积分活动 1498815
关于科研通互助平台的介绍 1467321