Risk prediction for cut-ins using multi-driver simulation data and machine learning algorithms: A comparison among decision tree, GBDT and LSTM

计算机科学 决策树 机器学习 聚类分析 人工智能 Boosting(机器学习) 变量(数学) 树(集合论) 碰撞 数据挖掘 数学 计算机安全 数学分析
作者
Tianyang Luo,Junhua Wang,Ting Fu,Qiangqiang Shangguan,Sheng Fang
出处
期刊:International journal of transportation science and technology [Elsevier BV]
卷期号:12 (3): 862-877 被引量:2
标识
DOI:10.1016/j.ijtst.2022.12.001
摘要

The cut-ins (one kind of lane-changing behaviors) have result in severe safety issues, especially at the entrances and exits of urban expressways. Risk prediction and characteristics analysis of cut-ins are part of the essential research for advanced in-vehicle technologies which can reduce crash occurrences. This paper makes some efforts on these purposes. In this paper, twenty-four participants were recruited to conduct the experiments of multi-driver simulation for risky driving data collection. The surrogate measures, Time Exposure Time-to-Collision (TET) and Time Integrated Time-to-collision (TIT) were employed to quantify the risk of cut-ins, then k-means clustering was applied for risk classification of 3 levels. Multiple candidate variables of two kinds were extracted including 10 behavioral variables and 7 driver trait variables. Based on these variables, three prediction models including decision tree (DT), gradient boosting decision tree (GBDT) and long short-term memory (LSTM) are used for predicting the risks of cut-ins. Results from data validity verification show that the data collected from multi-driver simulation experiments is valid compared with real-world data. From results of risk prediction models, the LSTM, with an overall accuracy of 87%, outperforms the GBDT (80.67%) and DT (76.9%). Despite this, this paper also concludes the merits of the DT over the GBDT and LSTM in variable explanation and the results of DT suggest that controlling the proper lane-changing gap and short duration of cut-ins can help reduce risks of cut-ins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11关闭了11文献求助
1秒前
香蕉觅云应助高挑的沛蓝采纳,获得30
2秒前
单雅慧完成签到,获得积分10
3秒前
jouholly完成签到,获得积分10
5秒前
花生仔应助KID采纳,获得10
6秒前
8秒前
9秒前
搣迣瀧仯完成签到,获得积分10
10秒前
张张完成签到,获得积分10
11秒前
青青发布了新的文献求助30
14秒前
14秒前
linkman发布了新的文献求助30
14秒前
花生仔应助大象放冰箱采纳,获得10
15秒前
小吴同学来啦完成签到,获得积分10
15秒前
poison完成签到 ,获得积分10
16秒前
加油站应助宁阿霜采纳,获得20
17秒前
18秒前
19秒前
完美世界应助科研助手6采纳,获得10
19秒前
20秒前
jucy完成签到,获得积分10
20秒前
20秒前
Ray完成签到,获得积分10
21秒前
是龙龙呀发布了新的文献求助10
21秒前
桐桐应助仁爱的绿海采纳,获得10
21秒前
石石刘完成签到 ,获得积分10
22秒前
KID完成签到,获得积分10
22秒前
小张同学完成签到,获得积分10
23秒前
严梓铭发布了新的文献求助10
23秒前
YGTRECE发布了新的文献求助10
24秒前
现代书雪发布了新的文献求助30
25秒前
LCM666发布了新的文献求助10
26秒前
小小阿杰完成签到,获得积分10
26秒前
张两丰完成签到,获得积分10
26秒前
霹雳小土豆-完成签到,获得积分10
28秒前
29秒前
张雯雯发布了新的文献求助10
29秒前
30秒前
YGTRECE完成签到,获得积分20
31秒前
上官若男应助1111采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993