Deleterious synonymous mutation identification based on selective ensemble strategy

成对比较 水准点(测量) 突变 同义替换 计算机科学 多数决原则 集合预报 集成学习 人工智能 计算生物学 机器学习 遗传学 生物 基因 基因组 密码子使用偏好性 地理 大地测量学
作者
Lihua Wang,Tao Zhang,Lihong Yu,Chun-Hou Zheng,Wenguang Yin,Junfeng Xia,Tiejun Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1)
标识
DOI:10.1093/bib/bbac598
摘要

Although previous studies have revealed that synonymous mutations contribute to various human diseases, distinguishing deleterious synonymous mutations from benign ones is still a challenge in medical genomics. Recently, computational tools have been introduced to predict the harmfulness of synonymous mutations. However, most of these computational tools rely on balanced training sets without considering abundant negative samples that could result in deficient performance. In this study, we propose a computational model that uses a selective ensemble to predict deleterious synonymous mutations (seDSM). We construct several candidate base classifiers for the ensemble using balanced training subsets randomly sampled from the imbalanced benchmark training sets. The diversity measures of the base classifiers are calculated by the pairwise diversity metrics, and the classifiers with the highest diversities are selected for integration using soft voting for synonymous mutation prediction. We also design two strategies for filling in missing values in the imbalanced dataset and constructing models using different pairwise diversity metrics. The experimental results show that a selective ensemble based on double fault with the ensemble strategy EKNNI for filling in missing values is the most effective scheme. Finally, using 40-dimensional biology features, we propose a novel model based on a selective ensemble for predicting deleterious synonymous mutations (seDSM). seDSM outperformed other state-of-the-art methods on the independent test sets according to multiple evaluation indicators, indicating that it has an outstanding predictive performance for deleterious synonymous mutations. We hope that seDSM will be useful for studying deleterious synonymous mutations and advancing our understanding of synonymous mutations. The source code of seDSM is freely accessible at https://github.com/xialab-ahu/seDSM.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3D完成签到 ,获得积分10
刚刚
霸气鞯完成签到 ,获得积分10
1秒前
凌晨五点的完成签到,获得积分10
2秒前
踏水追风完成签到,获得积分10
3秒前
3秒前
4秒前
crave发布了新的文献求助10
4秒前
乔苏惠娜完成签到,获得积分10
4秒前
4秒前
沙扬娜拉发布了新的文献求助10
5秒前
长风完成签到 ,获得积分10
6秒前
Brian完成签到,获得积分10
10秒前
缓慢冥幽发布了新的文献求助10
10秒前
ang完成签到,获得积分10
11秒前
12秒前
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
纯情的天奇完成签到 ,获得积分10
13秒前
yangsi完成签到 ,获得积分10
13秒前
趙途嘵生完成签到,获得积分10
14秒前
腾腾完成签到 ,获得积分10
15秒前
落后访风完成签到,获得积分10
15秒前
曾经小伙完成签到 ,获得积分10
16秒前
沉静的乘风完成签到,获得积分10
17秒前
阿尔治完成签到,获得积分10
17秒前
研友_V8QBrL完成签到,获得积分10
17秒前
克偃统统完成签到 ,获得积分10
20秒前
en完成签到,获得积分10
21秒前
ha完成签到 ,获得积分10
21秒前
iuhgnor完成签到,获得积分10
22秒前
傲娇的云朵完成签到,获得积分10
24秒前
小包子完成签到,获得积分10
26秒前
CART汪完成签到,获得积分10
26秒前
云缘墨色完成签到 ,获得积分10
27秒前
scc完成签到,获得积分10
28秒前
叶落无痕、完成签到,获得积分10
28秒前
子春完成签到 ,获得积分10
29秒前
小乌龟完成签到,获得积分10
29秒前
高高的远山完成签到,获得积分10
30秒前
hahasun完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008855
求助须知:如何正确求助?哪些是违规求助? 3548508
关于积分的说明 11299006
捐赠科研通 3283151
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220