Deleterious synonymous mutation identification based on selective ensemble strategy

成对比较 水准点(测量) 突变 同义替换 计算机科学 多数决原则 集合预报 集成学习 人工智能 计算生物学 机器学习 遗传学 生物 基因 基因组 密码子使用偏好性 地理 大地测量学
作者
Lihua Wang,Tao Zhang,Lihong Yu,Chun-Hou Zheng,Wenguang Yin,Junfeng Xia,Tiejun Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1)
标识
DOI:10.1093/bib/bbac598
摘要

Although previous studies have revealed that synonymous mutations contribute to various human diseases, distinguishing deleterious synonymous mutations from benign ones is still a challenge in medical genomics. Recently, computational tools have been introduced to predict the harmfulness of synonymous mutations. However, most of these computational tools rely on balanced training sets without considering abundant negative samples that could result in deficient performance. In this study, we propose a computational model that uses a selective ensemble to predict deleterious synonymous mutations (seDSM). We construct several candidate base classifiers for the ensemble using balanced training subsets randomly sampled from the imbalanced benchmark training sets. The diversity measures of the base classifiers are calculated by the pairwise diversity metrics, and the classifiers with the highest diversities are selected for integration using soft voting for synonymous mutation prediction. We also design two strategies for filling in missing values in the imbalanced dataset and constructing models using different pairwise diversity metrics. The experimental results show that a selective ensemble based on double fault with the ensemble strategy EKNNI for filling in missing values is the most effective scheme. Finally, using 40-dimensional biology features, we propose a novel model based on a selective ensemble for predicting deleterious synonymous mutations (seDSM). seDSM outperformed other state-of-the-art methods on the independent test sets according to multiple evaluation indicators, indicating that it has an outstanding predictive performance for deleterious synonymous mutations. We hope that seDSM will be useful for studying deleterious synonymous mutations and advancing our understanding of synonymous mutations. The source code of seDSM is freely accessible at https://github.com/xialab-ahu/seDSM.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈慧完成签到,获得积分10
1秒前
1秒前
大个应助present采纳,获得10
3秒前
Leslie发布了新的文献求助10
3秒前
4秒前
liulujlnd2024完成签到,获得积分10
4秒前
xbbccc发布了新的文献求助10
5秒前
斯文败类应助ss采纳,获得10
5秒前
空古悠浪发布了新的文献求助10
6秒前
6秒前
bkagyin应助云宝采纳,获得10
7秒前
8秒前
飘逸的虔发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
小杨发布了新的文献求助10
12秒前
临在完成签到,获得积分10
12秒前
12秒前
12秒前
东郭代桃完成签到,获得积分10
14秒前
王哪跑12发布了新的文献求助10
14秒前
14秒前
present发布了新的文献求助10
14秒前
15秒前
15秒前
可可发布了新的文献求助10
15秒前
明月发布了新的文献求助10
15秒前
FIN应助Xppcjlan采纳,获得20
16秒前
17秒前
wanci应助飘逸的虔采纳,获得10
17秒前
归尘发布了新的文献求助30
18秒前
奋斗寒松发布了新的文献求助30
18秒前
咖啡豆完成签到,获得积分10
18秒前
dadaba发布了新的文献求助10
18秒前
培a完成签到,获得积分10
19秒前
20秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454924
求助须知:如何正确求助?哪些是违规求助? 3050185
关于积分的说明 9020562
捐赠科研通 2738826
什么是DOI,文献DOI怎么找? 1502304
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178