Atrous convolution aided integrated framework for lung nodule segmentation and classification

肺癌 结核(地质) 人工智能 雅卡索引 计算机科学 分割 Sørensen–骰子系数 卷积神经网络 模式识别(心理学) 放射科 图像分割 医学 病理 生物 古生物学
作者
Amitava Halder,Debangshu Dey
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:82: 104527-104527 被引量:11
标识
DOI:10.1016/j.bspc.2022.104527
摘要

Lung cancer has been recognized as the most life-threatening cancer all over the world. Appropriate detection of lung nodule using Computed Tomography (CT) images helps in early stage recognition of lung cancer. Different computer-aided algorithms play an important role in the early diagnosis of lung cancer and can increase the five-year survival rate of lung cancer patients. However, due to structural similarity, manually recognizing the malignant nodule from the benign is time-consuming and challenging task. Recently different deep learning (DL) based Computer-aided diagnosis (CADx) systems have been developed for lung nodule characterization. In this work, an integrated nodule segmentation and characterization framework has been developed using the concept of atrous convolution. The proposed Atrous Convolution-based Convolutional Neural Network (ATCNN) framework can segment and characterize lung nodules by capturing multi-scale features from the HRCT images. Different variants of the ATCNN framework have been analyzed for lung nodule characterization. Among them, ATCNN with a two-layer atrous pyramid and residual connections (ATCNN2PR) has demonstrated the highest classification performance indices for nodule characterization. The new ATCNN2PR framework has obtained an average Dice Similarity Coefficient (DSC), Jaccard Index (JI), and Boundary F1 (BF) score of 0.9715, 0.9520, and 0.9584 for nodule segmentation and sensitivity, specificity, accuracy of 95.84%, 96.89%, and 95.97% for lung nodule characterization on LIDC-IDRI dataset. The proposed automatic trainable end-to-end system has outperforms other competing frameworks by capturing multi-scale features from High-Resolution Computed Tomography (HRCT) nodule images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热的河马完成签到,获得积分10
1秒前
端庄白猫发布了新的文献求助10
2秒前
syt完成签到,获得积分10
3秒前
大力日记本完成签到,获得积分10
3秒前
木子倪完成签到,获得积分10
4秒前
Hello应助平平淡淡采纳,获得10
4秒前
烟花应助然大宝采纳,获得10
8秒前
张亮完成签到,获得积分10
9秒前
犹豫的凡白完成签到 ,获得积分10
10秒前
鹅鹅鹅饿完成签到 ,获得积分10
11秒前
眼睛大的寄真完成签到 ,获得积分10
13秒前
Jasper应助科研通管家采纳,获得20
14秒前
今后应助科研通管家采纳,获得10
14秒前
14秒前
所所应助科研通管家采纳,获得10
14秒前
14秒前
无花果应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
liyunma完成签到,获得积分10
16秒前
轻松的剑完成签到 ,获得积分10
18秒前
山乞凡完成签到 ,获得积分10
23秒前
可靠的书桃完成签到 ,获得积分10
23秒前
CipherSage应助zhangxr采纳,获得10
25秒前
26秒前
Yu完成签到 ,获得积分10
26秒前
29秒前
吃小孩的妖怪完成签到 ,获得积分10
30秒前
byelue完成签到,获得积分10
31秒前
美满的稚晴完成签到 ,获得积分10
32秒前
切奇莉亚发布了新的文献求助10
33秒前
猪肉超人菜婴蚊完成签到,获得积分10
37秒前
风滚草完成签到,获得积分10
39秒前
40秒前
清修完成签到,获得积分10
41秒前
42秒前
马登完成签到,获得积分10
42秒前
科研韭菜完成签到 ,获得积分10
43秒前
曹操的曹完成签到,获得积分10
43秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790643
关于积分的说明 7795972
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626300
版权声明 601176