Atrous convolution aided integrated framework for lung nodule segmentation and classification

肺癌 结核(地质) 人工智能 雅卡索引 计算机科学 分割 Sørensen–骰子系数 卷积神经网络 模式识别(心理学) 放射科 图像分割 医学 病理 生物 古生物学
作者
Amitava Halder,Debangshu Dey
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:82: 104527-104527 被引量:11
标识
DOI:10.1016/j.bspc.2022.104527
摘要

Lung cancer has been recognized as the most life-threatening cancer all over the world. Appropriate detection of lung nodule using Computed Tomography (CT) images helps in early stage recognition of lung cancer. Different computer-aided algorithms play an important role in the early diagnosis of lung cancer and can increase the five-year survival rate of lung cancer patients. However, due to structural similarity, manually recognizing the malignant nodule from the benign is time-consuming and challenging task. Recently different deep learning (DL) based Computer-aided diagnosis (CADx) systems have been developed for lung nodule characterization. In this work, an integrated nodule segmentation and characterization framework has been developed using the concept of atrous convolution. The proposed Atrous Convolution-based Convolutional Neural Network (ATCNN) framework can segment and characterize lung nodules by capturing multi-scale features from the HRCT images. Different variants of the ATCNN framework have been analyzed for lung nodule characterization. Among them, ATCNN with a two-layer atrous pyramid and residual connections (ATCNN2PR) has demonstrated the highest classification performance indices for nodule characterization. The new ATCNN2PR framework has obtained an average Dice Similarity Coefficient (DSC), Jaccard Index (JI), and Boundary F1 (BF) score of 0.9715, 0.9520, and 0.9584 for nodule segmentation and sensitivity, specificity, accuracy of 95.84%, 96.89%, and 95.97% for lung nodule characterization on LIDC-IDRI dataset. The proposed automatic trainable end-to-end system has outperforms other competing frameworks by capturing multi-scale features from High-Resolution Computed Tomography (HRCT) nodule images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻的荔枝完成签到,获得积分10
刚刚
马香芦完成签到,获得积分10
刚刚
火星上小馒头完成签到,获得积分20
1秒前
小王发布了新的文献求助10
1秒前
李健应助夸夸555采纳,获得10
1秒前
1秒前
1秒前
萧水白完成签到,获得积分10
2秒前
崔哈哈完成签到,获得积分20
2秒前
bkagyin应助WN采纳,获得10
3秒前
kitty完成签到,获得积分10
3秒前
甜蜜鹭洋完成签到 ,获得积分10
4秒前
SciGPT应助Silvia采纳,获得10
4秒前
深情安青应助hutu采纳,获得10
4秒前
ddddd完成签到,获得积分10
4秒前
kagami发布了新的文献求助10
5秒前
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
星点点发布了新的文献求助10
6秒前
6秒前
6秒前
Sam发布了新的文献求助10
6秒前
蔡蔡不菜菜完成签到,获得积分10
7秒前
傅晓发布了新的文献求助10
7秒前
mary发布了新的文献求助10
7秒前
hinini发布了新的文献求助10
7秒前
赘婿应助美丽乾采纳,获得10
7秒前
科研小白完成签到,获得积分10
7秒前
研友_5Y9X75完成签到,获得积分10
8秒前
8秒前
思源应助火星上小馒头采纳,获得10
8秒前
nini发布了新的文献求助10
9秒前
9秒前
跳跃毒娘发布了新的文献求助10
11秒前
吴吴完成签到,获得积分10
12秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301