Atrous convolution aided integrated framework for lung nodule segmentation and classification

肺癌 结核(地质) 人工智能 雅卡索引 计算机科学 分割 Sørensen–骰子系数 卷积神经网络 模式识别(心理学) 放射科 图像分割 医学 病理 生物 古生物学
作者
Amitava Halder,Debangshu Dey
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:82: 104527-104527 被引量:26
标识
DOI:10.1016/j.bspc.2022.104527
摘要

Lung cancer has been recognized as the most life-threatening cancer all over the world. Appropriate detection of lung nodule using Computed Tomography (CT) images helps in early stage recognition of lung cancer. Different computer-aided algorithms play an important role in the early diagnosis of lung cancer and can increase the five-year survival rate of lung cancer patients. However, due to structural similarity, manually recognizing the malignant nodule from the benign is time-consuming and challenging task. Recently different deep learning (DL) based Computer-aided diagnosis (CADx) systems have been developed for lung nodule characterization. In this work, an integrated nodule segmentation and characterization framework has been developed using the concept of atrous convolution. The proposed Atrous Convolution-based Convolutional Neural Network (ATCNN) framework can segment and characterize lung nodules by capturing multi-scale features from the HRCT images. Different variants of the ATCNN framework have been analyzed for lung nodule characterization. Among them, ATCNN with a two-layer atrous pyramid and residual connections (ATCNN2PR) has demonstrated the highest classification performance indices for nodule characterization. The new ATCNN2PR framework has obtained an average Dice Similarity Coefficient (DSC), Jaccard Index (JI), and Boundary F1 (BF) score of 0.9715, 0.9520, and 0.9584 for nodule segmentation and sensitivity, specificity, accuracy of 95.84%, 96.89%, and 95.97% for lung nodule characterization on LIDC-IDRI dataset. The proposed automatic trainable end-to-end system has outperforms other competing frameworks by capturing multi-scale features from High-Resolution Computed Tomography (HRCT) nodule images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
swimming完成签到 ,获得积分10
2秒前
年轻金毛发布了新的文献求助20
2秒前
量子星尘发布了新的文献求助10
2秒前
zhang-leo发布了新的文献求助10
2秒前
2秒前
3秒前
为什么要有昵称完成签到,获得积分10
4秒前
yummy发布了新的文献求助10
5秒前
wzy发布了新的文献求助10
5秒前
教授王完成签到,获得积分20
5秒前
昏睡的乌冬面完成签到 ,获得积分10
6秒前
科研圣体发布了新的文献求助10
7秒前
牛初辰完成签到 ,获得积分10
7秒前
WangPeidi发布了新的文献求助30
7秒前
称心映萱完成签到,获得积分10
7秒前
千山完成签到,获得积分10
7秒前
orixero应助雪白傲薇采纳,获得10
9秒前
充电宝应助认真搞科研啦采纳,获得10
9秒前
9秒前
13068957428完成签到 ,获得积分10
10秒前
2023204306324发布了新的文献求助10
10秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
Xuan发布了新的文献求助30
15秒前
zeal完成签到,获得积分10
15秒前
7777777完成签到,获得积分20
17秒前
完美世界应助zhang-leo采纳,获得10
17秒前
jiaheyuan发布了新的文献求助10
17秒前
18秒前
依米完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
科研通AI6应助WangPeidi采纳,获得30
20秒前
烂漫的涫完成签到 ,获得积分10
21秒前
22秒前
该饮茶了完成签到,获得积分10
22秒前
lsy发布了新的文献求助10
24秒前
英姑应助2023204306324采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675131
求助须知:如何正确求助?哪些是违规求助? 4943188
关于积分的说明 15151425
捐赠科研通 4834322
什么是DOI,文献DOI怎么找? 2589419
邀请新用户注册赠送积分活动 1542993
关于科研通互助平台的介绍 1500994