Atrous convolution aided integrated framework for lung nodule segmentation and classification

肺癌 结核(地质) 人工智能 雅卡索引 计算机科学 分割 Sørensen–骰子系数 卷积神经网络 模式识别(心理学) 放射科 图像分割 医学 病理 生物 古生物学
作者
Amitava Halder,Debangshu Dey
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:82: 104527-104527 被引量:26
标识
DOI:10.1016/j.bspc.2022.104527
摘要

Lung cancer has been recognized as the most life-threatening cancer all over the world. Appropriate detection of lung nodule using Computed Tomography (CT) images helps in early stage recognition of lung cancer. Different computer-aided algorithms play an important role in the early diagnosis of lung cancer and can increase the five-year survival rate of lung cancer patients. However, due to structural similarity, manually recognizing the malignant nodule from the benign is time-consuming and challenging task. Recently different deep learning (DL) based Computer-aided diagnosis (CADx) systems have been developed for lung nodule characterization. In this work, an integrated nodule segmentation and characterization framework has been developed using the concept of atrous convolution. The proposed Atrous Convolution-based Convolutional Neural Network (ATCNN) framework can segment and characterize lung nodules by capturing multi-scale features from the HRCT images. Different variants of the ATCNN framework have been analyzed for lung nodule characterization. Among them, ATCNN with a two-layer atrous pyramid and residual connections (ATCNN2PR) has demonstrated the highest classification performance indices for nodule characterization. The new ATCNN2PR framework has obtained an average Dice Similarity Coefficient (DSC), Jaccard Index (JI), and Boundary F1 (BF) score of 0.9715, 0.9520, and 0.9584 for nodule segmentation and sensitivity, specificity, accuracy of 95.84%, 96.89%, and 95.97% for lung nodule characterization on LIDC-IDRI dataset. The proposed automatic trainable end-to-end system has outperforms other competing frameworks by capturing multi-scale features from High-Resolution Computed Tomography (HRCT) nodule images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我有魔鬼大头应助yinyin采纳,获得40
刚刚
sy发布了新的文献求助10
1秒前
1秒前
dihaha完成签到,获得积分10
1秒前
七木完成签到,获得积分10
1秒前
2秒前
2秒前
nl不分完成签到,获得积分10
2秒前
2秒前
way完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
欧维发布了新的文献求助10
4秒前
打烊发布了新的文献求助10
4秒前
yd完成签到,获得积分10
5秒前
李爱国应助caidun采纳,获得10
5秒前
renxiya发布了新的文献求助10
5秒前
王乐乐发布了新的文献求助10
5秒前
SMZ应助读研读研采纳,获得10
6秒前
格子完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
研友_VZG7GZ应助七七采纳,获得10
7秒前
7秒前
8秒前
Tong完成签到,获得积分10
8秒前
8秒前
9秒前
hahah发布了新的文献求助10
10秒前
无极微光应助超速也文章采纳,获得20
10秒前
panyubo发布了新的文献求助10
10秒前
任侠传发布了新的文献求助10
13秒前
清辉夜凝完成签到 ,获得积分10
13秒前
格奥高完成签到,获得积分10
13秒前
七月份的风完成签到 ,获得积分10
13秒前
欧维完成签到,获得积分10
13秒前
13秒前
科研通AI6应助聪明帅哥采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490