Atrous convolution aided integrated framework for lung nodule segmentation and classification

肺癌 结核(地质) 人工智能 雅卡索引 计算机科学 分割 Sørensen–骰子系数 卷积神经网络 模式识别(心理学) 放射科 图像分割 医学 病理 生物 古生物学
作者
Amitava Halder,Debangshu Dey
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:82: 104527-104527 被引量:26
标识
DOI:10.1016/j.bspc.2022.104527
摘要

Lung cancer has been recognized as the most life-threatening cancer all over the world. Appropriate detection of lung nodule using Computed Tomography (CT) images helps in early stage recognition of lung cancer. Different computer-aided algorithms play an important role in the early diagnosis of lung cancer and can increase the five-year survival rate of lung cancer patients. However, due to structural similarity, manually recognizing the malignant nodule from the benign is time-consuming and challenging task. Recently different deep learning (DL) based Computer-aided diagnosis (CADx) systems have been developed for lung nodule characterization. In this work, an integrated nodule segmentation and characterization framework has been developed using the concept of atrous convolution. The proposed Atrous Convolution-based Convolutional Neural Network (ATCNN) framework can segment and characterize lung nodules by capturing multi-scale features from the HRCT images. Different variants of the ATCNN framework have been analyzed for lung nodule characterization. Among them, ATCNN with a two-layer atrous pyramid and residual connections (ATCNN2PR) has demonstrated the highest classification performance indices for nodule characterization. The new ATCNN2PR framework has obtained an average Dice Similarity Coefficient (DSC), Jaccard Index (JI), and Boundary F1 (BF) score of 0.9715, 0.9520, and 0.9584 for nodule segmentation and sensitivity, specificity, accuracy of 95.84%, 96.89%, and 95.97% for lung nodule characterization on LIDC-IDRI dataset. The proposed automatic trainable end-to-end system has outperforms other competing frameworks by capturing multi-scale features from High-Resolution Computed Tomography (HRCT) nodule images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西发布了新的文献求助10
刚刚
干净的烧鹅完成签到,获得积分10
1秒前
SciGPT应助yeung采纳,获得10
2秒前
量子星尘发布了新的文献求助50
2秒前
3秒前
3秒前
萌宁发布了新的文献求助10
3秒前
在水一方应助ckk采纳,获得10
3秒前
所所应助章鱼采纳,获得10
4秒前
夕雨嘘完成签到,获得积分10
4秒前
爆米花应助云墨采纳,获得10
5秒前
6秒前
科研通AI6应助boymin2015采纳,获得10
6秒前
iNk应助Kashing采纳,获得20
6秒前
研友_VZG7GZ应助嗜血啊阳采纳,获得10
7秒前
weiteman完成签到,获得积分10
7秒前
kingwill应助空白采纳,获得20
8秒前
8秒前
8秒前
9秒前
李爱国应助纯真雁菱采纳,获得10
9秒前
10秒前
怂怂完成签到 ,获得积分10
10秒前
CodeCraft应助HZHZHZH采纳,获得10
11秒前
米克发布了新的文献求助10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助150
12秒前
思源应助droke采纳,获得10
13秒前
14秒前
ckk发布了新的文献求助10
15秒前
渐殇雨发布了新的文献求助10
15秒前
xiadengke完成签到,获得积分10
15秒前
桐桐应助贪玩的咪咪采纳,获得10
16秒前
16秒前
wuwa完成签到,获得积分10
16秒前
yeung发布了新的文献求助10
18秒前
19秒前
李x完成签到,获得积分10
20秒前
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124448
求助须知:如何正确求助?哪些是违规求助? 4328721
关于积分的说明 13488255
捐赠科研通 4163099
什么是DOI,文献DOI怎么找? 2282182
邀请新用户注册赠送积分活动 1283377
关于科研通互助平台的介绍 1222607