Atrous convolution aided integrated framework for lung nodule segmentation and classification

肺癌 结核(地质) 人工智能 雅卡索引 计算机科学 分割 Sørensen–骰子系数 卷积神经网络 模式识别(心理学) 放射科 图像分割 医学 病理 生物 古生物学
作者
Amitava Halder,Debangshu Dey
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:82: 104527-104527 被引量:26
标识
DOI:10.1016/j.bspc.2022.104527
摘要

Lung cancer has been recognized as the most life-threatening cancer all over the world. Appropriate detection of lung nodule using Computed Tomography (CT) images helps in early stage recognition of lung cancer. Different computer-aided algorithms play an important role in the early diagnosis of lung cancer and can increase the five-year survival rate of lung cancer patients. However, due to structural similarity, manually recognizing the malignant nodule from the benign is time-consuming and challenging task. Recently different deep learning (DL) based Computer-aided diagnosis (CADx) systems have been developed for lung nodule characterization. In this work, an integrated nodule segmentation and characterization framework has been developed using the concept of atrous convolution. The proposed Atrous Convolution-based Convolutional Neural Network (ATCNN) framework can segment and characterize lung nodules by capturing multi-scale features from the HRCT images. Different variants of the ATCNN framework have been analyzed for lung nodule characterization. Among them, ATCNN with a two-layer atrous pyramid and residual connections (ATCNN2PR) has demonstrated the highest classification performance indices for nodule characterization. The new ATCNN2PR framework has obtained an average Dice Similarity Coefficient (DSC), Jaccard Index (JI), and Boundary F1 (BF) score of 0.9715, 0.9520, and 0.9584 for nodule segmentation and sensitivity, specificity, accuracy of 95.84%, 96.89%, and 95.97% for lung nodule characterization on LIDC-IDRI dataset. The proposed automatic trainable end-to-end system has outperforms other competing frameworks by capturing multi-scale features from High-Resolution Computed Tomography (HRCT) nodule images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐的泥猴桃完成签到 ,获得积分10
1秒前
1秒前
3秒前
科研通AI6应助SY采纳,获得10
3秒前
秀丽笑容完成签到,获得积分10
3秒前
4秒前
zz发布了新的文献求助10
4秒前
Hello应助鼻揩了转去采纳,获得10
5秒前
5秒前
斯文败类应助cassie采纳,获得10
5秒前
棕色垂耳兔完成签到 ,获得积分10
5秒前
6秒前
QQ发布了新的文献求助10
7秒前
Lucas应助健康的绮晴采纳,获得10
8秒前
8秒前
欢喜的依风完成签到,获得积分10
8秒前
丘比特应助YY采纳,获得10
10秒前
10秒前
peng完成签到,获得积分10
10秒前
11秒前
莫晓岚完成签到 ,获得积分10
11秒前
丘比特应助温芳奇采纳,获得10
11秒前
科研通AI2S应助愉快若烟采纳,获得10
13秒前
13秒前
英俊的铭应助111采纳,获得10
14秒前
14秒前
奋斗寒天发布了新的文献求助10
16秒前
VIVI完成签到,获得积分10
16秒前
酷波er应助ajjdnd采纳,获得10
17秒前
Nolan完成签到,获得积分10
17秒前
17秒前
nini完成签到,获得积分10
18秒前
QQ完成签到,获得积分20
18秒前
研友_VZG7GZ应助无忧采纳,获得10
18秒前
mvpzxx发布了新的文献求助30
19秒前
20秒前
沉静水儿发布了新的文献求助10
23秒前
刻苦的媚颜完成签到 ,获得积分10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995