Super-resolution generative adversarial networks of randomly-seeded fields

计算机科学 领域(数学) 算法 人工智能 数学 纯数学
作者
Alejandro Güemes,Carlos Sanmiguel Vila,Stefano Discetti
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (12): 1165-1173 被引量:35
标识
DOI:10.1038/s42256-022-00572-7
摘要

Reconstruction of field quantities from sparse measurements is a problem arising in a broad spectrum of applications. This task is particularly challenging when the mapping between sparse measurements and field quantities is performed in an unsupervised manner. Further complexity is added for moving sensors and/or random on–off status. Under such conditions, the most straightforward solution is to interpolate the scattered data onto a regular grid. However, the spatial resolution achieved with this approach is ultimately limited by the mean spacing between the sparse measurements. In this work, we propose a super-resolution generative adversarial network framework to estimate field quantities from random sparse sensors. The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions. It is hereby referred to as the randomly seeded super-resolution generative adversarial network (RaSeedGAN). The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distribution measurements and particle-image velocimetry data of a zero-pressure-gradient turbulent boundary layer. The results show excellent performance even in cases with high sparsity or noise level. This generative adversarial network algorithm provides full-field high-resolution estimation from randomly seeded fields with no need of full-field high-resolution representations for training. The problem of reconstructing full-field quantities from incomplete observations arises in various real-world applications. Güemes and colleagues propose a super-resolution algorithm based on a generative adversarial network that can achieve reconstruction of the underlying field from random sparse measurements without requiring full-field high-resolution training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
王黎应助科研通管家采纳,获得30
刚刚
李爱国应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Neko应助科研通管家采纳,获得20
1秒前
1秒前
JiangHb完成签到,获得积分10
2秒前
3秒前
3秒前
Jian发布了新的文献求助20
3秒前
lingjuanwu发布了新的文献求助10
3秒前
南鸢完成签到 ,获得积分10
4秒前
今后应助wbn1212采纳,获得10
4秒前
光电彭于晏完成签到,获得积分10
4秒前
丰盛的煎饼应助LiShin采纳,获得10
5秒前
大胆的凡儿完成签到 ,获得积分10
5秒前
蝴蝶发布了新的文献求助10
9秒前
槐序发布了新的文献求助10
11秒前
11秒前
陶醉晓凡关注了科研通微信公众号
12秒前
爱学习的小菜鸡完成签到,获得积分10
13秒前
13秒前
17秒前
取法乎上完成签到 ,获得积分10
17秒前
xiaozheng完成签到,获得积分10
19秒前
情怀应助一朵小鲜花儿采纳,获得10
23秒前
海鲜汤完成签到 ,获得积分10
23秒前
24秒前
29秒前
科研通AI5应助大力的无声采纳,获得10
29秒前
bkagyin应助大力的无声采纳,获得10
29秒前
30秒前
30秒前
30秒前
CodeCraft应助大力的无声采纳,获得10
30秒前
丘比特应助大力的无声采纳,获得10
30秒前
乐乐应助大力的无声采纳,获得10
30秒前
NexusExplorer应助大力的无声采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851