Super-resolution generative adversarial networks of randomly-seeded fields

计算机科学 领域(数学) 算法 人工智能 数学 纯数学
作者
Alejandro Güemes,Carlos Sanmiguel Vila,Stefano Discetti
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (12): 1165-1173 被引量:43
标识
DOI:10.1038/s42256-022-00572-7
摘要

Reconstruction of field quantities from sparse measurements is a problem arising in a broad spectrum of applications. This task is particularly challenging when the mapping between sparse measurements and field quantities is performed in an unsupervised manner. Further complexity is added for moving sensors and/or random on–off status. Under such conditions, the most straightforward solution is to interpolate the scattered data onto a regular grid. However, the spatial resolution achieved with this approach is ultimately limited by the mean spacing between the sparse measurements. In this work, we propose a super-resolution generative adversarial network framework to estimate field quantities from random sparse sensors. The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions. It is hereby referred to as the randomly seeded super-resolution generative adversarial network (RaSeedGAN). The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distribution measurements and particle-image velocimetry data of a zero-pressure-gradient turbulent boundary layer. The results show excellent performance even in cases with high sparsity or noise level. This generative adversarial network algorithm provides full-field high-resolution estimation from randomly seeded fields with no need of full-field high-resolution representations for training. The problem of reconstructing full-field quantities from incomplete observations arises in various real-world applications. Güemes and colleagues propose a super-resolution algorithm based on a generative adversarial network that can achieve reconstruction of the underlying field from random sparse measurements without requiring full-field high-resolution training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23应助一一采纳,获得10
1秒前
uu应助xuhongfei采纳,获得20
1秒前
枪手发布了新的文献求助10
1秒前
雪白凌翠发布了新的文献求助10
4秒前
美梦成真完成签到 ,获得积分10
5秒前
woodenfish发布了新的文献求助20
5秒前
一袋星光完成签到 ,获得积分10
5秒前
邱邱完成签到,获得积分20
5秒前
沉默是金发布了新的文献求助10
6秒前
6121完成签到,获得积分10
6秒前
科研通AI5应助yyh采纳,获得10
6秒前
所所应助zxzxzx采纳,获得20
6秒前
7秒前
风中善若发布了新的文献求助10
8秒前
SciGPT应助yulian采纳,获得10
8秒前
Jackson完成签到 ,获得积分10
9秒前
Hedou完成签到,获得积分10
10秒前
WAN发布了新的文献求助10
11秒前
6121发布了新的文献求助10
11秒前
雪白凌翠完成签到,获得积分10
11秒前
三金大王完成签到,获得积分10
11秒前
12秒前
考博圣体发布了新的文献求助10
12秒前
lhy33966完成签到,获得积分10
13秒前
13秒前
Ava应助科研小乞丐采纳,获得10
13秒前
一一完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
Murphy_H完成签到,获得积分10
16秒前
自然的冷珍完成签到,获得积分20
17秒前
小超完成签到,获得积分10
17秒前
yss发布了新的文献求助10
17秒前
18秒前
18秒前
赘婿应助WYB采纳,获得30
18秒前
昵称发布了新的文献求助10
19秒前
脑洞疼应助负责的寒梅采纳,获得30
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088946
求助须知:如何正确求助?哪些是违规求助? 4303807
关于积分的说明 13412545
捐赠科研通 4129492
什么是DOI,文献DOI怎么找? 2261479
邀请新用户注册赠送积分活动 1265554
关于科研通互助平台的介绍 1200181