亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Super-resolution generative adversarial networks of randomly-seeded fields

计算机科学 领域(数学) 算法 人工智能 数学 纯数学
作者
Alejandro Güemes,Carlos Sanmiguel Vila,Stefano Discetti
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (12): 1165-1173 被引量:38
标识
DOI:10.1038/s42256-022-00572-7
摘要

Reconstruction of field quantities from sparse measurements is a problem arising in a broad spectrum of applications. This task is particularly challenging when the mapping between sparse measurements and field quantities is performed in an unsupervised manner. Further complexity is added for moving sensors and/or random on–off status. Under such conditions, the most straightforward solution is to interpolate the scattered data onto a regular grid. However, the spatial resolution achieved with this approach is ultimately limited by the mean spacing between the sparse measurements. In this work, we propose a super-resolution generative adversarial network framework to estimate field quantities from random sparse sensors. The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions. It is hereby referred to as the randomly seeded super-resolution generative adversarial network (RaSeedGAN). The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distribution measurements and particle-image velocimetry data of a zero-pressure-gradient turbulent boundary layer. The results show excellent performance even in cases with high sparsity or noise level. This generative adversarial network algorithm provides full-field high-resolution estimation from randomly seeded fields with no need of full-field high-resolution representations for training. The problem of reconstructing full-field quantities from incomplete observations arises in various real-world applications. Güemes and colleagues propose a super-resolution algorithm based on a generative adversarial network that can achieve reconstruction of the underlying field from random sparse measurements without requiring full-field high-resolution training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzq完成签到,获得积分10
1秒前
GLv完成签到,获得积分20
19秒前
不攻自破发布了新的文献求助10
20秒前
37秒前
Palpitate发布了新的文献求助10
41秒前
44秒前
1分钟前
1分钟前
Shoujiang完成签到 ,获得积分10
1分钟前
Akim应助Achange采纳,获得10
1分钟前
1分钟前
领导范儿应助不攻自破采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
不攻自破发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
bluebell发布了新的文献求助10
2分钟前
2分钟前
胡萝卜完成签到,获得积分10
2分钟前
Achange发布了新的文献求助10
2分钟前
小飞鸡发布了新的文献求助10
2分钟前
猪仔5号完成签到 ,获得积分10
3分钟前
Achange完成签到,获得积分10
3分钟前
小飞鸡完成签到,获得积分10
3分钟前
xicifish完成签到,获得积分10
3分钟前
xicifish发布了新的文献求助10
3分钟前
欧皇完成签到,获得积分20
3分钟前
3分钟前
桐桐应助科研通管家采纳,获得10
3分钟前
韦老虎完成签到,获得积分20
3分钟前
3分钟前
bluebell完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965706
求助须知:如何正确求助?哪些是违规求助? 3510935
关于积分的说明 11155653
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214