Super-resolution generative adversarial networks of randomly-seeded fields

计算机科学 领域(数学) 算法 人工智能 数学 纯数学
作者
Alejandro Güemes,Carlos Sanmiguel Vila,Stefano Discetti
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (12): 1165-1173 被引量:34
标识
DOI:10.1038/s42256-022-00572-7
摘要

Reconstruction of field quantities from sparse measurements is a problem arising in a broad spectrum of applications. This task is particularly challenging when the mapping between sparse measurements and field quantities is performed in an unsupervised manner. Further complexity is added for moving sensors and/or random on–off status. Under such conditions, the most straightforward solution is to interpolate the scattered data onto a regular grid. However, the spatial resolution achieved with this approach is ultimately limited by the mean spacing between the sparse measurements. In this work, we propose a super-resolution generative adversarial network framework to estimate field quantities from random sparse sensors. The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions. It is hereby referred to as the randomly seeded super-resolution generative adversarial network (RaSeedGAN). The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distribution measurements and particle-image velocimetry data of a zero-pressure-gradient turbulent boundary layer. The results show excellent performance even in cases with high sparsity or noise level. This generative adversarial network algorithm provides full-field high-resolution estimation from randomly seeded fields with no need of full-field high-resolution representations for training. The problem of reconstructing full-field quantities from incomplete observations arises in various real-world applications. Güemes and colleagues propose a super-resolution algorithm based on a generative adversarial network that can achieve reconstruction of the underlying field from random sparse measurements without requiring full-field high-resolution training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
神勇面包发布了新的文献求助10
3秒前
华贞完成签到,获得积分10
3秒前
4秒前
听着微妙丶旋律完成签到,获得积分10
4秒前
英姑应助碧蓝的诗桃采纳,获得10
5秒前
李西瓜发布了新的文献求助10
7秒前
认真学习的橘子完成签到,获得积分10
8秒前
研友_8o5V2n发布了新的文献求助10
9秒前
余闻问完成签到,获得积分10
9秒前
冷暖关注了科研通微信公众号
9秒前
传奇3应助耍酷芹菜采纳,获得10
9秒前
12秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
西西完成签到,获得积分20
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
tourist585应助科研通管家采纳,获得10
14秒前
14秒前
ding应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
yyyy发布了新的文献求助10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
shgd应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
15秒前
嗯嗯完成签到,获得积分10
16秒前
朝阳区李知恩应助super chan采纳,获得10
16秒前
轻松向彤发布了新的文献求助10
17秒前
科研通AI2S应助顺顺利利采纳,获得10
17秒前
芝士芝士发布了新的文献求助10
18秒前
乐乐乐乐乐乐应助lanan采纳,获得10
18秒前
丛柳完成签到 ,获得积分10
19秒前
iui飞发布了新的文献求助10
20秒前
属下存在感完成签到,获得积分10
23秒前
研友_ZrB5aZ完成签到,获得积分20
24秒前
24秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343491
求助须知:如何正确求助?哪些是违规求助? 2970529
关于积分的说明 8644400
捐赠科研通 2650596
什么是DOI,文献DOI怎么找? 1451426
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661536