BTC-fCNN: Fast Convolution Neural Network for Multi-class Brain Tumor Classification

计算机科学 Softmax函数 人工智能 卷积神经网络 卷积(计算机科学) 学习迁移 模式识别(心理学) 人工神经网络 上下文图像分类 深度学习 机器学习 图像(数学)
作者
Basant S. Abd El-Wahab,Mohamed E. Nasr,S. Khamis,Amira S. Ashour
出处
期刊:Health information science and systems [Springer Nature]
卷期号:11 (1) 被引量:33
标识
DOI:10.1007/s13755-022-00203-w
摘要

Abstract Timely prognosis of brain tumors has a crucial role for powerful healthcare of remedy-making plans. Manual classification of the brain tumors in magnetic resonance imaging (MRI) images is a challenging task, which relies on the experienced radiologists to identify and classify the brain tumor. Automated classification of different brain tumors is significant based on designing computer-aided diagnosis (CAD) systems. Existing classification methods suffer from unsatisfactory performance and/or large computational cost/ time. This paper proposed a fast and efficient classification process, called BTC-fCNN, which is a deep learning-based system to distinguish between different views of three brain tumor types, namely meningioma, glioma, and pituitary tumors. The proposed system’s model was applied on MRI images from the Figshare dataset. It consists of 13 layers with few trainable parameters involving convolution layer, 1 × 1 convolution layer, average pooling, fully connected layer, and softmax layer. Five iterations including transfer learning and five-fold cross-validation for retraining are considered to increase the proposed model performance. The proposed model achieved 98.63% average accuracy, using five iterations with transfer learning, and 98.86% using retrained five-fold cross-validation (internal transfer learning between the folds). Various evaluation metrics were measured to evaluate the proposed model, such as precision, F-score, recall, specificity and confusion matrix. The proposed BTC-fCNN model outstrips the state-of-the-art and other well-known convolution neural networks (CNN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gfqdts66完成签到 ,获得积分10
1秒前
2秒前
打打应助粥粥采纳,获得10
3秒前
香蕉觅云应助做实验太菜采纳,获得10
3秒前
4秒前
5秒前
YaoHui完成签到,获得积分10
5秒前
Air完成签到,获得积分20
5秒前
Yang发布了新的文献求助10
6秒前
zyz发布了新的文献求助10
6秒前
6秒前
heaven完成签到,获得积分10
7秒前
Air发布了新的文献求助10
8秒前
阿红完成签到,获得积分10
9秒前
lllkkk发布了新的文献求助10
10秒前
12秒前
情怀应助故事止于冬至采纳,获得10
13秒前
星辰大海应助YaoHui采纳,获得10
14秒前
pinellia完成签到,获得积分10
15秒前
斯文败类应助谷粱紫槐采纳,获得10
15秒前
bkagyin应助tangtang采纳,获得10
15秒前
16秒前
cqh发布了新的文献求助10
17秒前
20秒前
Yang完成签到,获得积分10
22秒前
22秒前
小支绝不停笔完成签到,获得积分20
22秒前
an发布了新的文献求助10
22秒前
lalala发布了新的文献求助10
23秒前
传奇3应助聪明的一德采纳,获得10
24秒前
zhongying完成签到 ,获得积分10
24秒前
FashionBoy应助故乡的云采纳,获得10
24秒前
24秒前
科目三应助Air采纳,获得10
25秒前
顾矜应助lllkkk采纳,获得10
25秒前
小蘑菇应助lllkkk采纳,获得10
25秒前
25秒前
简洁应助afterall采纳,获得20
25秒前
28秒前
棣棣完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124648
求助须知:如何正确求助?哪些是违规求助? 2774953
关于积分的说明 7724821
捐赠科研通 2430484
什么是DOI,文献DOI怎么找? 1291144
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323