BTC-fCNN: Fast Convolution Neural Network for Multi-class Brain Tumor Classification

计算机科学 Softmax函数 人工智能 卷积神经网络 卷积(计算机科学) 学习迁移 模式识别(心理学) 人工神经网络 上下文图像分类 深度学习 机器学习 图像(数学)
作者
Basant S. Abd El-Wahab,Mohamed E. Nasr,S. Khamis,Amira S. Ashour
出处
期刊:Health information science and systems [Springer Nature]
卷期号:11 (1) 被引量:33
标识
DOI:10.1007/s13755-022-00203-w
摘要

Abstract Timely prognosis of brain tumors has a crucial role for powerful healthcare of remedy-making plans. Manual classification of the brain tumors in magnetic resonance imaging (MRI) images is a challenging task, which relies on the experienced radiologists to identify and classify the brain tumor. Automated classification of different brain tumors is significant based on designing computer-aided diagnosis (CAD) systems. Existing classification methods suffer from unsatisfactory performance and/or large computational cost/ time. This paper proposed a fast and efficient classification process, called BTC-fCNN, which is a deep learning-based system to distinguish between different views of three brain tumor types, namely meningioma, glioma, and pituitary tumors. The proposed system’s model was applied on MRI images from the Figshare dataset. It consists of 13 layers with few trainable parameters involving convolution layer, 1 × 1 convolution layer, average pooling, fully connected layer, and softmax layer. Five iterations including transfer learning and five-fold cross-validation for retraining are considered to increase the proposed model performance. The proposed model achieved 98.63% average accuracy, using five iterations with transfer learning, and 98.86% using retrained five-fold cross-validation (internal transfer learning between the folds). Various evaluation metrics were measured to evaluate the proposed model, such as precision, F-score, recall, specificity and confusion matrix. The proposed BTC-fCNN model outstrips the state-of-the-art and other well-known convolution neural networks (CNN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖完成签到,获得积分20
1秒前
哇塞啊发布了新的文献求助10
1秒前
要减肥的歌曲完成签到,获得积分20
1秒前
1秒前
Watson完成签到,获得积分10
1秒前
Agu完成签到,获得积分10
2秒前
orixero应助balabala采纳,获得10
2秒前
X1完成签到,获得积分10
3秒前
SunOSun完成签到 ,获得积分10
3秒前
Cody完成签到,获得积分10
5秒前
aaa发布了新的文献求助10
5秒前
小白完成签到,获得积分10
6秒前
未来发布了新的文献求助10
6秒前
7秒前
调皮的巧凡完成签到,获得积分10
7秒前
吕志才发布了新的文献求助10
8秒前
8秒前
在水一方应助jj采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
jo完成签到,获得积分10
10秒前
10秒前
tengfei发布了新的文献求助10
11秒前
12秒前
13秒前
小夜子完成签到 ,获得积分10
13秒前
Herman完成签到 ,获得积分10
13秒前
Wdw2236发布了新的文献求助10
14秒前
夏xia完成签到 ,获得积分10
14秒前
鸡狗不如完成签到,获得积分20
14秒前
yuyu发布了新的文献求助10
15秒前
Lucky发布了新的文献求助10
16秒前
Akim应助0109采纳,获得10
16秒前
yoonkk完成签到,获得积分10
17秒前
共享精神应助如云之悠采纳,获得10
17秒前
充电宝应助刘豆豆采纳,获得10
17秒前
敏感的铃铛完成签到,获得积分10
18秒前
18秒前
Akim应助bowang采纳,获得10
18秒前
wzf发布了新的文献求助30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333