BTC-fCNN: Fast Convolution Neural Network for Multi-class Brain Tumor Classification

计算机科学 Softmax函数 人工智能 卷积神经网络 卷积(计算机科学) 学习迁移 模式识别(心理学) 人工神经网络 上下文图像分类 深度学习 机器学习 图像(数学)
作者
Basant S. Abd El-Wahab,Mohamed E. Nasr,S. Khamis,Amira S. Ashour
出处
期刊:Health information science and systems [Springer Nature]
卷期号:11 (1) 被引量:33
标识
DOI:10.1007/s13755-022-00203-w
摘要

Abstract Timely prognosis of brain tumors has a crucial role for powerful healthcare of remedy-making plans. Manual classification of the brain tumors in magnetic resonance imaging (MRI) images is a challenging task, which relies on the experienced radiologists to identify and classify the brain tumor. Automated classification of different brain tumors is significant based on designing computer-aided diagnosis (CAD) systems. Existing classification methods suffer from unsatisfactory performance and/or large computational cost/ time. This paper proposed a fast and efficient classification process, called BTC-fCNN, which is a deep learning-based system to distinguish between different views of three brain tumor types, namely meningioma, glioma, and pituitary tumors. The proposed system’s model was applied on MRI images from the Figshare dataset. It consists of 13 layers with few trainable parameters involving convolution layer, 1 × 1 convolution layer, average pooling, fully connected layer, and softmax layer. Five iterations including transfer learning and five-fold cross-validation for retraining are considered to increase the proposed model performance. The proposed model achieved 98.63% average accuracy, using five iterations with transfer learning, and 98.86% using retrained five-fold cross-validation (internal transfer learning between the folds). Various evaluation metrics were measured to evaluate the proposed model, such as precision, F-score, recall, specificity and confusion matrix. The proposed BTC-fCNN model outstrips the state-of-the-art and other well-known convolution neural networks (CNN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邢文瑞发布了新的文献求助10
刚刚
威灵仙发布了新的文献求助10
刚刚
英姑应助zhaoyali采纳,获得10
1秒前
种花家的狗狗完成签到,获得积分10
2秒前
蒲公英发布了新的文献求助10
2秒前
柯一一应助韩凡采纳,获得10
3秒前
4秒前
王檬发布了新的文献求助10
5秒前
6秒前
6秒前
orixero应助机智的醉山采纳,获得10
6秒前
7秒前
niuma完成签到,获得积分10
8秒前
博修发布了新的文献求助10
10秒前
勤劳怜寒发布了新的文献求助10
10秒前
SGQT发布了新的文献求助10
11秒前
11秒前
JamesPei应助Reid采纳,获得10
11秒前
12秒前
醉翁完成签到,获得积分10
12秒前
林夕发布了新的文献求助10
12秒前
我是老大应助蒲公英采纳,获得10
12秒前
寂寞的寄松应助曹慧采纳,获得10
14秒前
隐形曼青应助孝顺的尔丝采纳,获得10
14秒前
15秒前
zhaoyali发布了新的文献求助10
16秒前
17秒前
醉翁发布了新的文献求助10
18秒前
SGQT完成签到,获得积分10
19秒前
tongke完成签到,获得积分10
20秒前
wangayting发布了新的文献求助10
20秒前
粒123完成签到,获得积分20
20秒前
林夕完成签到,获得积分10
20秒前
20秒前
科研小狗完成签到,获得积分10
21秒前
Zhukic发布了新的文献求助10
21秒前
Halo完成签到,获得积分10
22秒前
22秒前
在水一方应助默默的芷烟采纳,获得10
23秒前
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508787
关于积分的说明 11143177
捐赠科研通 3241660
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873020
科研通“疑难数据库(出版商)”最低求助积分说明 803577