Deep Learning-Based Miniaturized All-Dielectric Ultracompact Film Spectrometer

分光计 光学 材料科学 编码器 谱线 计算机科学 探测器 滤波器(信号处理) 小型化 光路 光学滤波器 物理 计算机视觉 纳米技术 天文 操作系统
作者
Junren Wen,Lingyun Hao,Cheng Gao,Hailan Wang,Kun Mo,Wenjia Yuan,Xiao Chen,Yusi Wang,Yueguang Zhang,Yuchuan Shao,Chenying Yang,Weidong Shen
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:10 (1): 225-233 被引量:29
标识
DOI:10.1021/acsphotonics.2c01498
摘要

Conventional benchtop spectrometers with bulky dispersive optics and long optical path lengths display limitations where the significance of miniaturization, real-time detection, and low cost transcend the ultrafine resolution and wide spectral range. Here, we demonstrate a miniaturized all-dielectric ultracompact film spectrometer based on deep learning working in the single-shot mode. The scheme employs 16 spectral encoders with simple five-layer film stacks where merely the thickness of the intermediate high-index modulation layer is varied to realize unique encoded transmission spectra. Structural parameters as well as transmission spectra of the filters are predesigned to guarantee weak correlation and highly efficient encoding. Leveraging a trained reconstruction network, the absolute spectra of various nonluminous samples are successfully reconstructed excluding the emitting spectrum of the light source and the spectral response of the detector. The remarkable reconstructed spectral imaging result for the color board is presented and the reconstructed spectra match well with the measured ones for different patches using the identical network. We utilized the least number of spectral encoders ever since to guarantee efficient encoding, along with the single thickness-variant modulation layer, which shows potential for mass, rapid, large-area production by combining deposition with nanoimprint. Instead of the synthetic Gaussian line shape spectra, a training dataset composed of diverse spectrum types is adopted to achieve fine generalization of the trained reconstruction network. In addition, by retraining the neural network, the reconstruction network is modified to fit for the actual filter functions of the spectral encoders, thus better reconstruction performance. The proposed miniaturized spectrometer has great prospects in the fields of consumer electronics, environmental monitoring, and disaster prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xumy完成签到,获得积分20
1秒前
1秒前
慧慧子完成签到,获得积分20
1秒前
2秒前
2秒前
在水一方应助Du采纳,获得10
2秒前
Xdhcg发布了新的文献求助20
3秒前
愿好应助xukaixuan001采纳,获得10
3秒前
4秒前
4秒前
甜美白云完成签到,获得积分20
4秒前
科研通AI2S应助yueyue采纳,获得20
5秒前
JamesPei应助xieyin717采纳,获得10
5秒前
浮游应助自由蓉采纳,获得10
5秒前
啊啊啊完成签到,获得积分10
6秒前
yyf发布了新的文献求助10
6秒前
赘婿应助zhanzhanzhan采纳,获得10
6秒前
6秒前
6秒前
xiuxue424发布了新的文献求助10
7秒前
Owen应助舒心的芝麻采纳,获得10
7秒前
猛小马发布了新的文献求助10
8秒前
写得出发的中完成签到,获得积分10
8秒前
lcm完成签到,获得积分10
8秒前
浮游应助青田101采纳,获得10
9秒前
多宝完成签到,获得积分10
9秒前
英俊的铭应助美好的千凝采纳,获得10
9秒前
大模型应助甲乙丙丁采纳,获得10
9秒前
缥缈灵煌发布了新的文献求助10
9秒前
活力的亦云完成签到,获得积分10
9秒前
春天在这李完成签到,获得积分10
9秒前
酷波er应助yichuan_wangjie采纳,获得10
9秒前
djbj2022发布了新的文献求助10
10秒前
10秒前
冷静的伊完成签到,获得积分10
10秒前
麻坛宗师完成签到 ,获得积分10
10秒前
123456789完成签到,获得积分10
10秒前
liuxingyu发布了新的文献求助10
10秒前
顾矜应助周shang采纳,获得10
11秒前
苏莉婷发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728