Deep Learning-Based Miniaturized All-Dielectric Ultracompact Film Spectrometer

分光计 光学 材料科学 编码器 谱线 计算机科学 探测器 滤波器(信号处理) 小型化 光路 光学滤波器 物理 计算机视觉 纳米技术 天文 操作系统
作者
Junren Wen,Lingyun Hao,Cheng Gao,Hailan Wang,Kun Mo,Wenjia Yuan,Xiao Chen,Yusi Wang,Yueguang Zhang,Yuchuan Shao,Chenying Yang,Weidong Shen
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:10 (1): 225-233 被引量:29
标识
DOI:10.1021/acsphotonics.2c01498
摘要

Conventional benchtop spectrometers with bulky dispersive optics and long optical path lengths display limitations where the significance of miniaturization, real-time detection, and low cost transcend the ultrafine resolution and wide spectral range. Here, we demonstrate a miniaturized all-dielectric ultracompact film spectrometer based on deep learning working in the single-shot mode. The scheme employs 16 spectral encoders with simple five-layer film stacks where merely the thickness of the intermediate high-index modulation layer is varied to realize unique encoded transmission spectra. Structural parameters as well as transmission spectra of the filters are predesigned to guarantee weak correlation and highly efficient encoding. Leveraging a trained reconstruction network, the absolute spectra of various nonluminous samples are successfully reconstructed excluding the emitting spectrum of the light source and the spectral response of the detector. The remarkable reconstructed spectral imaging result for the color board is presented and the reconstructed spectra match well with the measured ones for different patches using the identical network. We utilized the least number of spectral encoders ever since to guarantee efficient encoding, along with the single thickness-variant modulation layer, which shows potential for mass, rapid, large-area production by combining deposition with nanoimprint. Instead of the synthetic Gaussian line shape spectra, a training dataset composed of diverse spectrum types is adopted to achieve fine generalization of the trained reconstruction network. In addition, by retraining the neural network, the reconstruction network is modified to fit for the actual filter functions of the spectral encoders, thus better reconstruction performance. The proposed miniaturized spectrometer has great prospects in the fields of consumer electronics, environmental monitoring, and disaster prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
how应助everglow采纳,获得10
3秒前
ZihuiCCCC完成签到,获得积分10
3秒前
来自3602完成签到,获得积分10
4秒前
5秒前
小林完成签到,获得积分10
6秒前
小二郎应助雨中尘埃采纳,获得10
7秒前
平淡树叶完成签到,获得积分20
9秒前
how应助唐泽雪穗采纳,获得40
11秒前
美好灵寒发布了新的文献求助10
11秒前
英俊的铭应助new采纳,获得10
11秒前
漫漫完成签到 ,获得积分10
11秒前
所所应助dsajkdlas采纳,获得10
11秒前
llllllll完成签到,获得积分10
13秒前
15秒前
玛卡巴卡完成签到,获得积分10
15秒前
15秒前
好好学习完成签到,获得积分10
16秒前
JokerSun关注了科研通微信公众号
16秒前
Ry发布了新的文献求助10
17秒前
科研通AI6应助细腻的易真采纳,获得10
18秒前
ilc发布了新的文献求助10
19秒前
19秒前
莫愁一舞完成签到,获得积分10
19秒前
复杂的薯片完成签到,获得积分10
20秒前
科研通AI5应助Carly采纳,获得30
20秒前
zll发布了新的文献求助10
21秒前
Jasper应助shabbow采纳,获得50
22秒前
小二郎应助77采纳,获得10
24秒前
三三完成签到 ,获得积分10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
大个应助科研通管家采纳,获得10
25秒前
阿越应助科研通管家采纳,获得10
25秒前
xiaohe完成签到,获得积分10
25秒前
朴实山兰完成签到,获得积分10
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080