Deep Learning-Based Miniaturized All-Dielectric Ultracompact Film Spectrometer

分光计 光学 材料科学 编码器 谱线 计算机科学 探测器 滤波器(信号处理) 小型化 光路 光学滤波器 物理 计算机视觉 纳米技术 天文 操作系统
作者
Junren Wen,Lingyun Hao,Cheng Gao,Hailan Wang,Kun Mo,Wenjia Yuan,Xiao Chen,Yusi Wang,Yueguang Zhang,Yuchuan Shao,Chenying Yang,Weidong Shen
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:10 (1): 225-233 被引量:29
标识
DOI:10.1021/acsphotonics.2c01498
摘要

Conventional benchtop spectrometers with bulky dispersive optics and long optical path lengths display limitations where the significance of miniaturization, real-time detection, and low cost transcend the ultrafine resolution and wide spectral range. Here, we demonstrate a miniaturized all-dielectric ultracompact film spectrometer based on deep learning working in the single-shot mode. The scheme employs 16 spectral encoders with simple five-layer film stacks where merely the thickness of the intermediate high-index modulation layer is varied to realize unique encoded transmission spectra. Structural parameters as well as transmission spectra of the filters are predesigned to guarantee weak correlation and highly efficient encoding. Leveraging a trained reconstruction network, the absolute spectra of various nonluminous samples are successfully reconstructed excluding the emitting spectrum of the light source and the spectral response of the detector. The remarkable reconstructed spectral imaging result for the color board is presented and the reconstructed spectra match well with the measured ones for different patches using the identical network. We utilized the least number of spectral encoders ever since to guarantee efficient encoding, along with the single thickness-variant modulation layer, which shows potential for mass, rapid, large-area production by combining deposition with nanoimprint. Instead of the synthetic Gaussian line shape spectra, a training dataset composed of diverse spectrum types is adopted to achieve fine generalization of the trained reconstruction network. In addition, by retraining the neural network, the reconstruction network is modified to fit for the actual filter functions of the spectral encoders, thus better reconstruction performance. The proposed miniaturized spectrometer has great prospects in the fields of consumer electronics, environmental monitoring, and disaster prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hjwhjwing发布了新的文献求助10
1秒前
上官若男应助只只采纳,获得10
1秒前
2秒前
willenliu发布了新的文献求助30
2秒前
JiAWee完成签到 ,获得积分10
3秒前
3秒前
111发布了新的文献求助10
3秒前
QQ完成签到,获得积分10
4秒前
aczqay发布了新的文献求助10
5秒前
彭于晏应助Zz采纳,获得10
5秒前
沉默寒云发布了新的文献求助10
6秒前
ric发布了新的文献求助10
6秒前
8秒前
8秒前
一瓣橘子完成签到,获得积分10
9秒前
JUN关注了科研通微信公众号
9秒前
9秒前
Chang完成签到,获得积分20
10秒前
小马甲应助111采纳,获得10
10秒前
领导范儿应助Lzx采纳,获得10
11秒前
科研通AI6应助momo采纳,获得10
11秒前
Wcy发布了新的文献求助10
12秒前
12秒前
12秒前
大白鹅关注了科研通微信公众号
12秒前
13秒前
13秒前
13秒前
leilei完成签到,获得积分10
14秒前
小鲨鱼完成签到,获得积分10
14秒前
liboo完成签到,获得积分10
14秒前
15秒前
15秒前
LL完成签到,获得积分10
15秒前
15秒前
鲤鱼南莲完成签到,获得积分20
15秒前
Phoenix完成签到,获得积分10
15秒前
yyc应助小小采纳,获得20
15秒前
mt发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393801
求助须知:如何正确求助?哪些是违规求助? 4515106
关于积分的说明 14052738
捐赠科研通 4426288
什么是DOI,文献DOI怎么找? 2431263
邀请新用户注册赠送积分活动 1423445
关于科研通互助平台的介绍 1402505