Deep Learning-Based Miniaturized All-Dielectric Ultracompact Film Spectrometer

分光计 光学 材料科学 编码器 谱线 计算机科学 探测器 滤波器(信号处理) 小型化 光路 光学滤波器 物理 计算机视觉 纳米技术 天文 操作系统
作者
Junren Wen,Lingyun Hao,Cheng Gao,Hailan Wang,Kun Mo,Wenjia Yuan,Xiao Chen,Yusi Wang,Yueguang Zhang,Yuchuan Shao,Chenying Yang,Weidong Shen
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:10 (1): 225-233 被引量:15
标识
DOI:10.1021/acsphotonics.2c01498
摘要

Conventional benchtop spectrometers with bulky dispersive optics and long optical path lengths display limitations where the significance of miniaturization, real-time detection, and low cost transcend the ultrafine resolution and wide spectral range. Here, we demonstrate a miniaturized all-dielectric ultracompact film spectrometer based on deep learning working in the single-shot mode. The scheme employs 16 spectral encoders with simple five-layer film stacks where merely the thickness of the intermediate high-index modulation layer is varied to realize unique encoded transmission spectra. Structural parameters as well as transmission spectra of the filters are predesigned to guarantee weak correlation and highly efficient encoding. Leveraging a trained reconstruction network, the absolute spectra of various nonluminous samples are successfully reconstructed excluding the emitting spectrum of the light source and the spectral response of the detector. The remarkable reconstructed spectral imaging result for the color board is presented and the reconstructed spectra match well with the measured ones for different patches using the identical network. We utilized the least number of spectral encoders ever since to guarantee efficient encoding, along with the single thickness-variant modulation layer, which shows potential for mass, rapid, large-area production by combining deposition with nanoimprint. Instead of the synthetic Gaussian line shape spectra, a training dataset composed of diverse spectrum types is adopted to achieve fine generalization of the trained reconstruction network. In addition, by retraining the neural network, the reconstruction network is modified to fit for the actual filter functions of the spectral encoders, thus better reconstruction performance. The proposed miniaturized spectrometer has great prospects in the fields of consumer electronics, environmental monitoring, and disaster prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃乘风完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
FashionBoy应助嗯嗯嗯采纳,获得10
1秒前
iian完成签到,获得积分10
2秒前
严冰蝶完成签到 ,获得积分10
2秒前
2秒前
2秒前
传奇3应助清风徐来采纳,获得10
3秒前
Singularity应助xiaojin采纳,获得10
3秒前
4秒前
喔喔完成签到,获得积分10
4秒前
hsialy完成签到,获得积分10
4秒前
悉达多发布了新的文献求助10
4秒前
wocao发布了新的文献求助200
4秒前
5秒前
充电宝应助薛定谔的猫采纳,获得10
5秒前
乐乐应助光亮的万天采纳,获得10
5秒前
5秒前
星辰大海应助JerryZ采纳,获得10
5秒前
6秒前
dengdeng完成签到,获得积分20
6秒前
orixero应助Dding采纳,获得20
6秒前
jellorio发布了新的文献求助10
7秒前
7秒前
冬嘉发布了新的文献求助10
9秒前
你是我的唯一完成签到,获得积分10
9秒前
wtf52018完成签到,获得积分10
9秒前
Mrwang完成签到,获得积分10
9秒前
Star1983发布了新的文献求助10
9秒前
10秒前
ymlllym发布了新的文献求助10
10秒前
11秒前
11秒前
zql74785发布了新的文献求助10
11秒前
华仔应助Yolo采纳,获得10
11秒前
虚心半兰完成签到,获得积分10
11秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958693
求助须知:如何正确求助?哪些是违规求助? 3504939
关于积分的说明 11121216
捐赠科研通 3236311
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871307
科研通“疑难数据库(出版商)”最低求助积分说明 802691