已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Tensor image registration library: Deformable registration of stand‐alone histology images to whole‐brain post‐mortem MRI data

计算机科学 图像配准 人工智能 计算机视觉 体素 分割 组织学 医学 病理 图像(数学)
作者
István N. Huszár,Menuka Pallebage-Gamarallage,Bangerter-Christensen S,Hannah Brooks,Sean P. Fitzgibbon,Sean Foxley,Marlies Hiemstra,Amy Fd Howard,Saad Jbabdi,Daniel Kor,Anna Leonte,Jeroen Mollink,Adele Smart,Benjamin C. Tendler,Martin R Turner,Olaf Ansorge,Karla L Miller,Mark Jenkinson
出处
期刊:NeuroImage [Elsevier BV]
卷期号:265: 119792-119792
标识
DOI:10.1016/j.neuroimage.2022.119792
摘要

Accurate registration between microscopy and MRI data is necessary for validating imaging biomarkers against neuropathology, and to disentangle complex signal dependencies in microstructural MRI. Existing registration methods often rely on serial histological sampling or significant manual input, providing limited scope to work with a large number of stand-alone histology sections. Here we present a customisable pipeline to assist the registration of stand-alone histology sections to whole-brain MRI data.Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 stages, with the help of two photographic intermediaries: a block face image (to undistort histology sections) and coronal brain slab photographs (to insert them into MRI space). Each registration stage is implemented as a configurable stand-alone Python script using our novel platform, Tensor Image Registration Library (TIRL), which provides flexibility for wider adaptation. We report our experience of registering 87 PLP-stained histology sections from 14 subjects and perform various experiments to assess the accuracy and robustness of each stage of the pipeline.All 87 histology sections were successfully registered to MRI. Histology-to-block registration (Stage 1) achieved 0.2-0.4 mm accuracy, better than commonly used existing methods. Block-to-slice matching (Stage 2) showed great robustness in automatically identifying and inserting small tissue blocks into whole brain slices with 0.2 mm accuracy. Simulations demonstrated sub-voxel level accuracy (0.13 mm) of the slice-to-volume registration (Stage 3) algorithm, which was observed in over 200 actual brain slice registrations, compensating 3D slice deformations up to 6.5 mm. Stage 4 combined the previous stages and generated refined pixelwise aligned multi-modal histology-MRI stacks.Our open-source pipeline provides robust automation tools for registering stand-alone histology sections to MRI data with sub-voxel level precision, and the underlying framework makes it readily adaptable to a diverse range of microscopy-MRI studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crystal完成签到 ,获得积分10
1秒前
Zlq发布了新的文献求助10
1秒前
3秒前
肖易应助幸福大白采纳,获得10
3秒前
zyq完成签到 ,获得积分10
4秒前
故城完成签到 ,获得积分10
4秒前
车灵寒发布了新的文献求助20
9秒前
脑洞疼应助Olivia采纳,获得30
9秒前
10秒前
wab完成签到,获得积分0
10秒前
弎夜发布了新的文献求助30
12秒前
忧心的网络完成签到,获得积分20
14秒前
不想干活应助幸福大白采纳,获得10
16秒前
不想干活应助幸福大白采纳,获得10
16秒前
万能图书馆应助幸福大白采纳,获得10
16秒前
领导范儿应助coollz采纳,获得10
17秒前
ccm应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
18秒前
汉堡包应助科研三轮车采纳,获得10
22秒前
26秒前
Eliauk完成签到 ,获得积分10
30秒前
活泼尔烟发布了新的文献求助10
32秒前
35秒前
37秒前
赘婿应助车灵寒采纳,获得10
39秒前
39秒前
崔梦楠完成签到 ,获得积分10
40秒前
HUNGJJ发布了新的文献求助10
41秒前
无花果应助大佬求帮采纳,获得10
41秒前
Rainnnn发布了新的文献求助10
43秒前
丸太子发布了新的文献求助10
44秒前
香蕉觅云应助Yolo采纳,获得10
47秒前
47秒前
dkjg完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542