Tensor image registration library: Deformable registration of stand‐alone histology images to whole‐brain post‐mortem MRI data

计算机科学 图像配准 人工智能 计算机视觉 体素 分割 组织学 医学 病理 图像(数学)
作者
István N. Huszár,Menuka Pallebage-Gamarallage,Bangerter-Christensen S,Hannah Brooks,Sean P. Fitzgibbon,Sean Foxley,Marlies Hiemstra,Amy Fd Howard,Saad Jbabdi,Daniel Kor,Anna Leonte,Jeroen Mollink,Adele Smart,Benjamin C. Tendler,Martin R Turner,Olaf Ansorge,Karla L Miller,Mark Jenkinson
出处
期刊:NeuroImage [Elsevier]
卷期号:265: 119792-119792
标识
DOI:10.1016/j.neuroimage.2022.119792
摘要

Accurate registration between microscopy and MRI data is necessary for validating imaging biomarkers against neuropathology, and to disentangle complex signal dependencies in microstructural MRI. Existing registration methods often rely on serial histological sampling or significant manual input, providing limited scope to work with a large number of stand-alone histology sections. Here we present a customisable pipeline to assist the registration of stand-alone histology sections to whole-brain MRI data.Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 stages, with the help of two photographic intermediaries: a block face image (to undistort histology sections) and coronal brain slab photographs (to insert them into MRI space). Each registration stage is implemented as a configurable stand-alone Python script using our novel platform, Tensor Image Registration Library (TIRL), which provides flexibility for wider adaptation. We report our experience of registering 87 PLP-stained histology sections from 14 subjects and perform various experiments to assess the accuracy and robustness of each stage of the pipeline.All 87 histology sections were successfully registered to MRI. Histology-to-block registration (Stage 1) achieved 0.2-0.4 mm accuracy, better than commonly used existing methods. Block-to-slice matching (Stage 2) showed great robustness in automatically identifying and inserting small tissue blocks into whole brain slices with 0.2 mm accuracy. Simulations demonstrated sub-voxel level accuracy (0.13 mm) of the slice-to-volume registration (Stage 3) algorithm, which was observed in over 200 actual brain slice registrations, compensating 3D slice deformations up to 6.5 mm. Stage 4 combined the previous stages and generated refined pixelwise aligned multi-modal histology-MRI stacks.Our open-source pipeline provides robust automation tools for registering stand-alone histology sections to MRI data with sub-voxel level precision, and the underlying framework makes it readily adaptable to a diverse range of microscopy-MRI studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
南漂完成签到,获得积分10
1秒前
1秒前
姜怡完成签到,获得积分10
2秒前
浮游应助幽默尔蓝采纳,获得10
2秒前
hebhm发布了新的文献求助10
3秒前
lala完成签到,获得积分10
3秒前
温婉的谷菱完成签到,获得积分10
4秒前
儒雅厉发布了新的文献求助10
4秒前
ikun0000完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助20
5秒前
tinna完成签到,获得积分10
5秒前
GJT0427gjt完成签到,获得积分10
5秒前
心灵美砖头完成签到,获得积分10
6秒前
ikun完成签到,获得积分10
6秒前
Hey完成签到 ,获得积分10
6秒前
ch完成签到,获得积分10
6秒前
宁阿霜完成签到,获得积分10
6秒前
没有花活儿完成签到,获得积分10
7秒前
keke完成签到,获得积分10
7秒前
Yamila完成签到,获得积分10
7秒前
脆脆鲨完成签到,获得积分10
7秒前
7秒前
Sandy完成签到,获得积分10
7秒前
无敌阿东完成签到,获得积分10
8秒前
bjx发布了新的文献求助10
9秒前
潇洒的难摧完成签到,获得积分20
9秒前
小电驴完成签到,获得积分10
9秒前
咩咩完成签到 ,获得积分10
9秒前
QQ完成签到,获得积分10
9秒前
sapioe完成签到,获得积分10
10秒前
调皮惜天完成签到,获得积分10
10秒前
777发布了新的文献求助10
10秒前
10秒前
Mandy完成签到,获得积分10
11秒前
1234完成签到,获得积分10
11秒前
化工渣渣完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570