已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Tensor image registration library: Deformable registration of stand‐alone histology images to whole‐brain post‐mortem MRI data

计算机科学 图像配准 人工智能 计算机视觉 体素 分割 组织学 医学 病理 图像(数学)
作者
István N. Huszár,Menuka Pallebage-Gamarallage,Bangerter-Christensen S,Hannah Brooks,Sean P. Fitzgibbon,Sean Foxley,Marlies Hiemstra,Amy Fd Howard,Saad Jbabdi,Daniel Kor,Anna Leonte,Jeroen Mollink,Adele Smart,Benjamin C. Tendler,Martin R Turner,Olaf Ansorge,Karla L Miller,Mark Jenkinson
出处
期刊:NeuroImage [Elsevier]
卷期号:265: 119792-119792
标识
DOI:10.1016/j.neuroimage.2022.119792
摘要

Accurate registration between microscopy and MRI data is necessary for validating imaging biomarkers against neuropathology, and to disentangle complex signal dependencies in microstructural MRI. Existing registration methods often rely on serial histological sampling or significant manual input, providing limited scope to work with a large number of stand-alone histology sections. Here we present a customisable pipeline to assist the registration of stand-alone histology sections to whole-brain MRI data.Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 stages, with the help of two photographic intermediaries: a block face image (to undistort histology sections) and coronal brain slab photographs (to insert them into MRI space). Each registration stage is implemented as a configurable stand-alone Python script using our novel platform, Tensor Image Registration Library (TIRL), which provides flexibility for wider adaptation. We report our experience of registering 87 PLP-stained histology sections from 14 subjects and perform various experiments to assess the accuracy and robustness of each stage of the pipeline.All 87 histology sections were successfully registered to MRI. Histology-to-block registration (Stage 1) achieved 0.2-0.4 mm accuracy, better than commonly used existing methods. Block-to-slice matching (Stage 2) showed great robustness in automatically identifying and inserting small tissue blocks into whole brain slices with 0.2 mm accuracy. Simulations demonstrated sub-voxel level accuracy (0.13 mm) of the slice-to-volume registration (Stage 3) algorithm, which was observed in over 200 actual brain slice registrations, compensating 3D slice deformations up to 6.5 mm. Stage 4 combined the previous stages and generated refined pixelwise aligned multi-modal histology-MRI stacks.Our open-source pipeline provides robust automation tools for registering stand-alone histology sections to MRI data with sub-voxel level precision, and the underlying framework makes it readily adaptable to a diverse range of microscopy-MRI studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦璃完成签到 ,获得积分10
3秒前
忧郁完成签到 ,获得积分10
4秒前
7秒前
U87发布了新的文献求助30
7秒前
8秒前
zhanglan完成签到,获得积分10
10秒前
陶醉紫菜发布了新的文献求助10
12秒前
唐唐的猫咪完成签到 ,获得积分10
18秒前
CATH完成签到 ,获得积分10
20秒前
ZTLlele完成签到 ,获得积分10
20秒前
WillGUO发布了新的文献求助10
20秒前
香蕉面包完成签到 ,获得积分10
20秒前
21秒前
23秒前
科目三应助zy采纳,获得10
23秒前
走啊走应助Aimee采纳,获得30
24秒前
小宋同学不能怂完成签到 ,获得积分10
24秒前
yuebaoji完成签到,获得积分10
25秒前
Ressia0727发布了新的文献求助10
27秒前
无语的巨人完成签到 ,获得积分10
29秒前
亦hcy完成签到,获得积分10
31秒前
称心的栗子完成签到 ,获得积分10
32秒前
晁子枫完成签到 ,获得积分10
32秒前
Sunziy完成签到,获得积分10
34秒前
37秒前
小张完成签到 ,获得积分10
38秒前
40秒前
l0000完成签到,获得积分10
43秒前
44秒前
川川发布了新的文献求助10
44秒前
zy发布了新的文献求助10
45秒前
yy发布了新的文献求助10
48秒前
SciGPT应助科研民工李采纳,获得10
51秒前
dongdong发布了新的文献求助10
51秒前
KT酱完成签到 ,获得积分10
52秒前
zy完成签到,获得积分10
53秒前
鹏笑完成签到,获得积分10
54秒前
852应助川川采纳,获得10
55秒前
ychen完成签到,获得积分10
55秒前
Ccccn完成签到,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655