Tensor image registration library: Deformable registration of stand‐alone histology images to whole‐brain post‐mortem MRI data

计算机科学 图像配准 人工智能 计算机视觉 体素 分割 组织学 医学 病理 图像(数学)
作者
István N. Huszár,Menuka Pallebage-Gamarallage,Bangerter-Christensen S,Hannah Brooks,Sean P. Fitzgibbon,Sean Foxley,Marlies Hiemstra,Amy Fd Howard,Saad Jbabdi,Daniel Kor,Anna Leonte,Jeroen Mollink,Adele Smart,Benjamin C. Tendler,Martin R Turner,Olaf Ansorge,Karla L Miller,Mark Jenkinson
出处
期刊:NeuroImage [Elsevier BV]
卷期号:265: 119792-119792
标识
DOI:10.1016/j.neuroimage.2022.119792
摘要

Accurate registration between microscopy and MRI data is necessary for validating imaging biomarkers against neuropathology, and to disentangle complex signal dependencies in microstructural MRI. Existing registration methods often rely on serial histological sampling or significant manual input, providing limited scope to work with a large number of stand-alone histology sections. Here we present a customisable pipeline to assist the registration of stand-alone histology sections to whole-brain MRI data.Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 stages, with the help of two photographic intermediaries: a block face image (to undistort histology sections) and coronal brain slab photographs (to insert them into MRI space). Each registration stage is implemented as a configurable stand-alone Python script using our novel platform, Tensor Image Registration Library (TIRL), which provides flexibility for wider adaptation. We report our experience of registering 87 PLP-stained histology sections from 14 subjects and perform various experiments to assess the accuracy and robustness of each stage of the pipeline.All 87 histology sections were successfully registered to MRI. Histology-to-block registration (Stage 1) achieved 0.2-0.4 mm accuracy, better than commonly used existing methods. Block-to-slice matching (Stage 2) showed great robustness in automatically identifying and inserting small tissue blocks into whole brain slices with 0.2 mm accuracy. Simulations demonstrated sub-voxel level accuracy (0.13 mm) of the slice-to-volume registration (Stage 3) algorithm, which was observed in over 200 actual brain slice registrations, compensating 3D slice deformations up to 6.5 mm. Stage 4 combined the previous stages and generated refined pixelwise aligned multi-modal histology-MRI stacks.Our open-source pipeline provides robust automation tools for registering stand-alone histology sections to MRI data with sub-voxel level precision, and the underlying framework makes it readily adaptable to a diverse range of microscopy-MRI studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小小K发布了新的文献求助10
1秒前
大个应助花花猪1989采纳,获得10
2秒前
wangqing发布了新的文献求助10
2秒前
研友_VZG7GZ应助dong采纳,获得10
2秒前
新新发布了新的文献求助30
3秒前
3秒前
无言完成签到,获得积分20
3秒前
Wilbert完成签到 ,获得积分10
3秒前
鹤鸣完成签到,获得积分10
4秒前
www完成签到,获得积分10
4秒前
英俊的铭应助纯真的瑞克采纳,获得10
4秒前
wwsybx发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
123完成签到,获得积分10
5秒前
5秒前
清雨潇璇完成签到,获得积分10
5秒前
WYQ完成签到,获得积分10
6秒前
烂漫臻发布了新的文献求助10
6秒前
小小K完成签到,获得积分20
6秒前
传奇3应助愉快尔丝采纳,获得10
7秒前
仰天虾米发布了新的文献求助10
7秒前
7秒前
zyl完成签到,获得积分10
7秒前
CodeCraft应助yukex采纳,获得10
7秒前
恰个泡芙完成签到,获得积分10
9秒前
9秒前
13379307178发布了新的文献求助10
9秒前
水芸完成签到,获得积分10
10秒前
思源应助1900采纳,获得10
10秒前
王者归来发布了新的文献求助30
10秒前
11秒前
11秒前
vvan发布了新的文献求助10
11秒前
快乐香芦完成签到,获得积分20
11秒前
lxz发布了新的文献求助10
11秒前
LiuLiu完成签到,获得积分10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974559
求助须知:如何正确求助?哪些是违规求助? 3518949
关于积分的说明 11196503
捐赠科研通 3255066
什么是DOI,文献DOI怎么找? 1797673
邀请新用户注册赠送积分活动 877076
科研通“疑难数据库(出版商)”最低求助积分说明 806130