Tensor image registration library: Deformable registration of stand‐alone histology images to whole‐brain post‐mortem MRI data

计算机科学 图像配准 人工智能 计算机视觉 体素 分割 组织学 医学 病理 图像(数学)
作者
István N. Huszár,Menuka Pallebage-Gamarallage,Bangerter-Christensen S,Hannah Brooks,Sean P. Fitzgibbon,Sean Foxley,Marlies Hiemstra,Amy Fd Howard,Saad Jbabdi,Daniel Kor,Anna Leonte,Jeroen Mollink,Adele Smart,Benjamin C. Tendler,Martin R Turner,Olaf Ansorge,Karla L Miller,Mark Jenkinson
出处
期刊:NeuroImage [Elsevier]
卷期号:265: 119792-119792
标识
DOI:10.1016/j.neuroimage.2022.119792
摘要

Accurate registration between microscopy and MRI data is necessary for validating imaging biomarkers against neuropathology, and to disentangle complex signal dependencies in microstructural MRI. Existing registration methods often rely on serial histological sampling or significant manual input, providing limited scope to work with a large number of stand-alone histology sections. Here we present a customisable pipeline to assist the registration of stand-alone histology sections to whole-brain MRI data.Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 stages, with the help of two photographic intermediaries: a block face image (to undistort histology sections) and coronal brain slab photographs (to insert them into MRI space). Each registration stage is implemented as a configurable stand-alone Python script using our novel platform, Tensor Image Registration Library (TIRL), which provides flexibility for wider adaptation. We report our experience of registering 87 PLP-stained histology sections from 14 subjects and perform various experiments to assess the accuracy and robustness of each stage of the pipeline.All 87 histology sections were successfully registered to MRI. Histology-to-block registration (Stage 1) achieved 0.2-0.4 mm accuracy, better than commonly used existing methods. Block-to-slice matching (Stage 2) showed great robustness in automatically identifying and inserting small tissue blocks into whole brain slices with 0.2 mm accuracy. Simulations demonstrated sub-voxel level accuracy (0.13 mm) of the slice-to-volume registration (Stage 3) algorithm, which was observed in over 200 actual brain slice registrations, compensating 3D slice deformations up to 6.5 mm. Stage 4 combined the previous stages and generated refined pixelwise aligned multi-modal histology-MRI stacks.Our open-source pipeline provides robust automation tools for registering stand-alone histology sections to MRI data with sub-voxel level precision, and the underlying framework makes it readily adaptable to a diverse range of microscopy-MRI studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲悦发布了新的文献求助10
刚刚
CodeCraft应助迪琛采纳,获得10
刚刚
刚刚
1秒前
英俊的铭应助滴滴滴滴采纳,获得10
1秒前
歪石开通发布了新的文献求助10
1秒前
super完成签到,获得积分10
1秒前
搜集达人应助学霸土豆采纳,获得10
1秒前
song完成签到,获得积分20
1秒前
Titanium完成签到,获得积分10
2秒前
华仔应助七七四十九采纳,获得10
2秒前
清爽的碧空完成签到,获得积分10
3秒前
lvyan发布了新的文献求助10
3秒前
墨白发布了新的文献求助10
3秒前
CodeCraft应助武坤采纳,获得10
4秒前
4秒前
啊凡完成签到,获得积分10
5秒前
super发布了新的文献求助30
5秒前
666完成签到,获得积分10
5秒前
王灿灿发布了新的文献求助10
5秒前
whale完成签到,获得积分10
5秒前
SciGPT应助笨笨的数据线采纳,获得10
6秒前
飘逸曼彤完成签到,获得积分10
7秒前
暴走的烤包子完成签到 ,获得积分10
7秒前
你真是拿个啊完成签到,获得积分10
8秒前
kk完成签到 ,获得积分10
8秒前
8秒前
sci小神童完成签到,获得积分10
8秒前
apathetic完成签到,获得积分10
9秒前
猕猴桃味的水果糖完成签到,获得积分10
9秒前
金籽发布了新的文献求助10
9秒前
没有伞的青春完成签到 ,获得积分10
10秒前
10秒前
lll发布了新的文献求助50
10秒前
10秒前
Ding完成签到,获得积分20
11秒前
Dd完成签到,获得积分20
12秒前
12秒前
12秒前
行者无疆完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147162
求助须知:如何正确求助?哪些是违规求助? 2798435
关于积分的说明 7829030
捐赠科研通 2455138
什么是DOI,文献DOI怎么找? 1306576
科研通“疑难数据库(出版商)”最低求助积分说明 627838
版权声明 601567