Analytical Overview on Transfer Learning in Processing Dental X-rays

学习迁移 多样性(控制论) 计算机科学 人工智能 牙科研究 过程(计算) 机器学习 牙科 数据科学 医学 操作系统
作者
Seba Al Mokdad,Anas Al Houria,Manar Abu Talib,Mohammad Adel Moufti,Ahmed Bouridane,Qassim Nasir
标识
DOI:10.1145/3561613.3561635
摘要

Dental x-rays have been a standard piece of dental equipment for many years and are an indispensable diagnostic tool for dentists to detect tooth damage or disease. Recent research has focused on employing computer vision algorithms to automate analysis of dental x-rays. Our study aims to review the work done using transfer learning in dental image processing. AI solutions for dental images have been developed for many purposes, including examining tooth cavities (caries) and restorations and abnormalities in the maxillary sinuses. They have also been used to classify dental implants and determine gender in forensic studies. Transfer Learning is a new approach that is being used to solve a problem that classic deep learning and machine learning techniques could not solve: that of data limitation. Our search has investigated 80 research papers, of which 30 were relevant and analyzed in this paper. The identified studies have discussed a variety of transfer learning models to process different types of x-rays and have reported their efficacy using a variety of metrics. Transfer learning was used to solve various problems depending on the research question. Some papers compared the performance of transfer learning with that of dental experts in analyzing x-ray images, the accuracy of which were surprisingly close to equal. Although the results of the majority of dental applications performed using transfer learning models are encouraging, future research will need to solve the shortcomings highlighted in the present review.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助qzj采纳,获得10
刚刚
少盐完成签到,获得积分10
刚刚
1秒前
长情的觅翠完成签到,获得积分10
1秒前
axiao发布了新的文献求助50
1秒前
1秒前
Qing完成签到,获得积分10
2秒前
努力的小杜应助AmigoA采纳,获得10
3秒前
3秒前
3秒前
cruise发布了新的文献求助10
3秒前
执着的纸鹤完成签到,获得积分20
3秒前
4秒前
paoo完成签到,获得积分10
4秒前
天地不语完成签到,获得积分10
4秒前
4秒前
watson发布了新的文献求助10
4秒前
skyline发布了新的文献求助10
6秒前
江上烟发布了新的文献求助10
6秒前
cs完成签到 ,获得积分10
6秒前
王秋婷发布了新的文献求助10
6秒前
独特易形完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
一一发布了新的文献求助10
7秒前
科目三应助北海采纳,获得10
7秒前
8秒前
8秒前
10秒前
10秒前
11秒前
良药苦口发布了新的文献求助10
11秒前
panpanh完成签到,获得积分10
11秒前
TT完成签到,获得积分10
11秒前
11秒前
11秒前
Owen应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488751
求助须知:如何正确求助?哪些是违规求助? 3076283
关于积分的说明 9144615
捐赠科研通 2768593
什么是DOI,文献DOI怎么找? 1519274
邀请新用户注册赠送积分活动 703714
科研通“疑难数据库(出版商)”最低求助积分说明 701952