Inferring building function: A novel geo-aware neural network supporting building-level function classification

计算机科学 可转让性 功能(生物学) 人工神经网络 背景(考古学) 城市规划 数据挖掘 人工智能 机器学习 地理 土木工程 工程类 进化生物学 生物 罗伊特 考古
作者
Xucai Zhang,Xiaoping Liu,Kai Chen,Fangli Guan,Miao Luo,Haosheng Huang
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:89: 104349-104349 被引量:13
标识
DOI:10.1016/j.scs.2022.104349
摘要

Buildings are fundamental components of urban areas and they play a vital role in supporting human activities in daily life. Understanding the actual building functions is essential for many urban applications, such as city management, urban planning, and optimization of transportation systems. Existing studies for inferring building functions are mainly based on a building's own features, and ignore its "geographic context" (e.g., the influences of nearby buildings). This paper introduces a novel geo-aware neural network to infer the functions of individual buildings. To this end, the proposed model integrates information about the built environment and human activity of a target building and its "geographic context". The model further includes a geo-aware position embedding generator and transformer encoders to better capture the complex relationships between buildings. The evaluation results demonstrate that the proposed model outperforms all baselines and achieves a classification accuracy of 90.8%. Meanwhile, the proposed model works well even with a small amount of training dataset and has a good transferability to another urban area. In summary, the proposed model is an effective and reliable approach for inferring the functions of individual buildings and has high potential for city management and sustainable urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助会幸福的采纳,获得10
1秒前
闫闫完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
cuijinru完成签到 ,获得积分10
4秒前
4秒前
情怀应助看文献了采纳,获得10
5秒前
刘兆亮发布了新的文献求助10
5秒前
cjg发布了新的文献求助10
5秒前
Su发布了新的文献求助10
5秒前
罗钦完成签到 ,获得积分10
5秒前
常温可乐应助郑啊哈采纳,获得10
8秒前
8秒前
8秒前
魔幻擎宇完成签到,获得积分10
8秒前
9秒前
不是哥们完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
YY完成签到,获得积分10
12秒前
深情安青应助风中小刺猬采纳,获得10
13秒前
15秒前
15秒前
15秒前
15秒前
不倦发布了新的文献求助10
15秒前
16秒前
皮皮给皮皮的求助进行了留言
17秒前
华仔应助Nikki采纳,获得10
18秒前
19秒前
hd发布了新的文献求助10
19秒前
华仔应助东都哈士奇采纳,获得10
20秒前
李健的小迷弟应助lulu采纳,获得10
21秒前
LIU完成签到 ,获得积分10
22秒前
江睿曦发布了新的文献求助10
25秒前
阳光彩虹小白马完成签到 ,获得积分10
25秒前
26秒前
26秒前
碧蓝皮卡丘完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458506
求助须知:如何正确求助?哪些是违规求助? 4564551
关于积分的说明 14295462
捐赠科研通 4489422
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474