Inferring building function: A novel geo-aware neural network supporting building-level function classification

计算机科学 可转让性 功能(生物学) 人工神经网络 背景(考古学) 城市规划 数据挖掘 人工智能 机器学习 地理 土木工程 工程类 考古 罗伊特 进化生物学 生物
作者
Xucai Zhang,Xiaoping Liu,Kai Chen,Fangli Guan,Miao Luo,Haosheng Huang
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:89: 104349-104349 被引量:13
标识
DOI:10.1016/j.scs.2022.104349
摘要

Buildings are fundamental components of urban areas and they play a vital role in supporting human activities in daily life. Understanding the actual building functions is essential for many urban applications, such as city management, urban planning, and optimization of transportation systems. Existing studies for inferring building functions are mainly based on a building's own features, and ignore its "geographic context" (e.g., the influences of nearby buildings). This paper introduces a novel geo-aware neural network to infer the functions of individual buildings. To this end, the proposed model integrates information about the built environment and human activity of a target building and its "geographic context". The model further includes a geo-aware position embedding generator and transformer encoders to better capture the complex relationships between buildings. The evaluation results demonstrate that the proposed model outperforms all baselines and achieves a classification accuracy of 90.8%. Meanwhile, the proposed model works well even with a small amount of training dataset and has a good transferability to another urban area. In summary, the proposed model is an effective and reliable approach for inferring the functions of individual buildings and has high potential for city management and sustainable urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
lisn完成签到,获得积分10
4秒前
Lala发布了新的文献求助40
4秒前
小张发布了新的文献求助10
5秒前
四海完成签到,获得积分10
10秒前
15秒前
16秒前
奋斗的鞅完成签到 ,获得积分10
16秒前
华仔应助醋包plz采纳,获得10
18秒前
含蓄问安发布了新的文献求助80
18秒前
完美世界应助强健的雅霜采纳,获得10
19秒前
小张完成签到,获得积分10
20秒前
22秒前
lsy完成签到,获得积分10
22秒前
22秒前
Akim应助精明觅海采纳,获得10
23秒前
25秒前
拓跋书芹发布了新的文献求助10
26秒前
27秒前
Miracle发布了新的文献求助10
28秒前
一如果一完成签到,获得积分10
28秒前
30秒前
31秒前
31秒前
xiaoKai发布了新的文献求助10
32秒前
柠栀完成签到 ,获得积分10
33秒前
Ting222完成签到,获得积分10
33秒前
陈柚子完成签到,获得积分10
34秒前
34秒前
35秒前
拓跋书芹完成签到,获得积分10
35秒前
Lucas应助TTTHANKS采纳,获得10
36秒前
小蘑菇应助懵懂的梦秋采纳,获得10
37秒前
37秒前
37秒前
精明觅海发布了新的文献求助10
40秒前
42秒前
桐桐应助安静的翼采纳,获得10
43秒前
44秒前
奋斗喵完成签到 ,获得积分10
44秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152043
求助须知:如何正确求助?哪些是违规求助? 2803339
关于积分的说明 7853343
捐赠科研通 2460804
什么是DOI,文献DOI怎么找? 1310058
科研通“疑难数据库(出版商)”最低求助积分说明 629097
版权声明 601765