已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Inferring building function: A novel geo-aware neural network supporting building-level function classification

计算机科学 可转让性 功能(生物学) 人工神经网络 背景(考古学) 城市规划 数据挖掘 人工智能 机器学习 地理 土木工程 工程类 进化生物学 生物 罗伊特 考古
作者
Xucai Zhang,Xiaoping Liu,Kai Chen,Fangli Guan,Miao Luo,Haosheng Huang
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:89: 104349-104349 被引量:13
标识
DOI:10.1016/j.scs.2022.104349
摘要

Buildings are fundamental components of urban areas and they play a vital role in supporting human activities in daily life. Understanding the actual building functions is essential for many urban applications, such as city management, urban planning, and optimization of transportation systems. Existing studies for inferring building functions are mainly based on a building's own features, and ignore its "geographic context" (e.g., the influences of nearby buildings). This paper introduces a novel geo-aware neural network to infer the functions of individual buildings. To this end, the proposed model integrates information about the built environment and human activity of a target building and its "geographic context". The model further includes a geo-aware position embedding generator and transformer encoders to better capture the complex relationships between buildings. The evaluation results demonstrate that the proposed model outperforms all baselines and achieves a classification accuracy of 90.8%. Meanwhile, the proposed model works well even with a small amount of training dataset and has a good transferability to another urban area. In summary, the proposed model is an effective and reliable approach for inferring the functions of individual buildings and has high potential for city management and sustainable urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白糖发布了新的文献求助10
刚刚
zhong发布了新的文献求助10
刚刚
上官若男应助忧虑的代容采纳,获得10
1秒前
2秒前
lhs完成签到,获得积分20
4秒前
4秒前
情怀应助顺心人达采纳,获得10
5秒前
zzzdx发布了新的文献求助10
8秒前
9秒前
田雨弘完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
接两块钱应助一一采纳,获得10
12秒前
帅气绮露完成签到,获得积分10
13秒前
13秒前
windom完成签到,获得积分10
13秒前
mage完成签到,获得积分10
14秒前
haha完成签到 ,获得积分10
15秒前
帅气绮露发布了新的文献求助10
16秒前
lhs发布了新的文献求助30
16秒前
曲奇饼干发布了新的文献求助10
17秒前
18秒前
我是老大应助yier采纳,获得10
18秒前
SciGPT应助淡淡梦容采纳,获得30
19秒前
CodeCraft应助hotdx采纳,获得10
21秒前
Orange应助jhw采纳,获得10
21秒前
22秒前
22秒前
24秒前
顾矜应助森森森采纳,获得10
26秒前
坞屿完成签到,获得积分20
26秒前
jhw完成签到,获得积分10
27秒前
28秒前
几道完成签到,获得积分10
29秒前
杜大帅发布了新的文献求助30
29秒前
文艺的从筠完成签到,获得积分10
30秒前
31秒前
32秒前
初夏发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779009
求助须知:如何正确求助?哪些是违规求助? 5645254
关于积分的说明 15451020
捐赠科研通 4910481
什么是DOI,文献DOI怎么找? 2642724
邀请新用户注册赠送积分活动 1590412
关于科研通互助平台的介绍 1544770