Inferring building function: A novel geo-aware neural network supporting building-level function classification

计算机科学 可转让性 功能(生物学) 人工神经网络 背景(考古学) 城市规划 数据挖掘 人工智能 机器学习 地理 土木工程 工程类 进化生物学 生物 罗伊特 考古
作者
Xucai Zhang,Xiaoping Liu,Kai Chen,Fangli Guan,Miao Luo,Haosheng Huang
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:89: 104349-104349 被引量:13
标识
DOI:10.1016/j.scs.2022.104349
摘要

Buildings are fundamental components of urban areas and they play a vital role in supporting human activities in daily life. Understanding the actual building functions is essential for many urban applications, such as city management, urban planning, and optimization of transportation systems. Existing studies for inferring building functions are mainly based on a building's own features, and ignore its "geographic context" (e.g., the influences of nearby buildings). This paper introduces a novel geo-aware neural network to infer the functions of individual buildings. To this end, the proposed model integrates information about the built environment and human activity of a target building and its "geographic context". The model further includes a geo-aware position embedding generator and transformer encoders to better capture the complex relationships between buildings. The evaluation results demonstrate that the proposed model outperforms all baselines and achieves a classification accuracy of 90.8%. Meanwhile, the proposed model works well even with a small amount of training dataset and has a good transferability to another urban area. In summary, the proposed model is an effective and reliable approach for inferring the functions of individual buildings and has high potential for city management and sustainable urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhy完成签到,获得积分10
1秒前
鲜艳的天磊应助徐矜采纳,获得50
2秒前
hhhhh发布了新的文献求助10
2秒前
LL完成签到,获得积分10
3秒前
大方弘文完成签到,获得积分10
3秒前
李健应助kirito采纳,获得10
3秒前
已经让发布了新的文献求助30
5秒前
艾泽拉斯的囚徒完成签到,获得积分10
5秒前
5秒前
5秒前
鲤鱼夜玉发布了新的文献求助20
6秒前
何一非完成签到,获得积分10
6秒前
aaabbbccc发布了新的文献求助10
6秒前
humorr完成签到,获得积分10
6秒前
wdlc完成签到,获得积分10
6秒前
小神完成签到,获得积分10
7秒前
123发布了新的文献求助10
7秒前
lxl发布了新的文献求助20
8秒前
木九黎发布了新的文献求助10
9秒前
辇道增七完成签到,获得积分10
9秒前
棋士应助安静的雁兰采纳,获得20
10秒前
10秒前
hhhhh完成签到,获得积分10
11秒前
wang完成签到,获得积分10
12秒前
艺术家完成签到,获得积分10
12秒前
zzz关注了科研通微信公众号
12秒前
13秒前
13秒前
小马甲应助单薄不惜采纳,获得10
13秒前
13秒前
13秒前
Michael完成签到,获得积分10
14秒前
AKYDXS完成签到,获得积分10
14秒前
hisingirl发布了新的文献求助10
15秒前
852应助aaabbbccc采纳,获得10
16秒前
学术大亨完成签到,获得积分10
16秒前
fanfan完成签到 ,获得积分10
16秒前
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926