Inferring building function: A novel geo-aware neural network supporting building-level function classification

计算机科学 可转让性 功能(生物学) 人工神经网络 背景(考古学) 城市规划 数据挖掘 人工智能 机器学习 地理 土木工程 工程类 进化生物学 生物 罗伊特 考古
作者
Xucai Zhang,Xiaoping Liu,Kai Chen,Fangli Guan,Miao Luo,Haosheng Huang
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:89: 104349-104349 被引量:13
标识
DOI:10.1016/j.scs.2022.104349
摘要

Buildings are fundamental components of urban areas and they play a vital role in supporting human activities in daily life. Understanding the actual building functions is essential for many urban applications, such as city management, urban planning, and optimization of transportation systems. Existing studies for inferring building functions are mainly based on a building's own features, and ignore its "geographic context" (e.g., the influences of nearby buildings). This paper introduces a novel geo-aware neural network to infer the functions of individual buildings. To this end, the proposed model integrates information about the built environment and human activity of a target building and its "geographic context". The model further includes a geo-aware position embedding generator and transformer encoders to better capture the complex relationships between buildings. The evaluation results demonstrate that the proposed model outperforms all baselines and achieves a classification accuracy of 90.8%. Meanwhile, the proposed model works well even with a small amount of training dataset and has a good transferability to another urban area. In summary, the proposed model is an effective and reliable approach for inferring the functions of individual buildings and has high potential for city management and sustainable urban planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一叶应助sure采纳,获得10
刚刚
刚刚
任性雨筠发布了新的文献求助10
刚刚
小熊发布了新的文献求助20
刚刚
ssch197发布了新的文献求助10
1秒前
搜集达人应助YY88687321采纳,获得10
1秒前
英勇的向日葵完成签到,获得积分20
1秒前
1秒前
世世世给世世世的求助进行了留言
1秒前
1秒前
1秒前
竞鹤发布了新的文献求助10
1秒前
刘可完成签到 ,获得积分10
1秒前
耳朵先生完成签到,获得积分10
2秒前
hanli1991关注了科研通微信公众号
2秒前
英姑应助huyz采纳,获得10
2秒前
2秒前
2秒前
lwb完成签到,获得积分10
2秒前
王xingxing完成签到 ,获得积分10
2秒前
hello888235发布了新的文献求助10
3秒前
王云云完成签到,获得积分10
3秒前
研友_LaNpln发布了新的文献求助10
4秒前
田様应助高高高采纳,获得10
4秒前
可恶地发布了新的文献求助10
4秒前
了解发布了新的文献求助10
4秒前
我是老大应助珩珩采纳,获得30
5秒前
科研通AI6应助斑鸠津采纳,获得10
5秒前
华仔应助心灵美明杰采纳,获得10
5秒前
6秒前
kyx关闭了kyx文献求助
6秒前
123发布了新的文献求助30
6秒前
6秒前
6秒前
7秒前
烤布蕾发布了新的文献求助10
7秒前
Nan语发布了新的文献求助10
7秒前
reiiia发布了新的文献求助10
7秒前
江汛完成签到,获得积分10
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498