系统间交叉
有机发光二极管
化学
量子效率
光子上转换
量子产额
电致发光
光电子学
单重态
激发态
激子
荧光
光化学
原子物理学
材料科学
发光
光学
物理
有机化学
图层(电子)
量子力学
作者
Xiaosong Cao,Ke Pan,Jingsheng Miao,Xialei Lv,Zhongyan Huang,Fan Ni,Xiaojun Yin,Yaxiong Wei,Chuluo Yang
摘要
Multiresonance thermal activated delayed fluorescence (MR-TADF) materials with an efficient spin–flip transition between singlet and triplet excited states remain demanding. Herein, we report an MR-TADF compound (BN–Se) simultaneously possessing efficient (reverse) intersystem crossing (ISC/RISC), fast radiative decay, close-to-unity quantum yield, and narrowband emission by embedding a single selenium atom into a common 4,4′-diazaborin framework. Benefitting from the high RISC efficiency accelerated by the heavy-atom effect, organic light-emitting diodes (OLEDs) based on BN–Se manifest excellent performance with an external quantum efficiency of up to 32.6% and an ultralow efficiency roll-off of 1.3% at 1000 cd m–2. Furthermore, the high ISC efficiency and small inherent energy loss also render BN–Se a superior photosensitizer to realize the first example of visible (λex > 450 nm)-to-UV (λem < 350 nm) triplet–triplet annihilation upconversion, with a high efficiency (21.4%) and an extremely low threshold intensity (1.3 mW cm–2). This work not only aids in designing advanced pure organic molecules with fast exciton dynamics but also highlights the value of MR-TADF compounds beyond OLED applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI