Improved Machine Learning Models by Data Processing for Predicting Life-Cycle Environmental Impacts of Chemicals

可解释性 特征选择 机器学习 人工神经网络 人工智能 计算机科学 特征(语言学) 生命周期评估 选择(遗传算法) 分子描述符 数据挖掘 滤波器(信号处理) 重采样 欧几里德距离 数量结构-活动关系 哲学 语言学 生产(经济) 经济 计算机视觉 宏观经济学
作者
Ye Sun,Xiuheng Wang,Nanqi Ren,Yanbiao Liu,Shijie You
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (8): 3434-3444 被引量:15
标识
DOI:10.1021/acs.est.2c04945
摘要

Machine learning (ML) provides an efficient manner for rapid prediction of the life-cycle environmental impacts of chemicals, but challenges remain due to low prediction accuracy and poor interpretability of the models. To address these issues, we focused on data processing by using a mutual information-permutation importance (MI-PI) feature selection method to filter out irrelevant molecular descriptors from the input data, which improved the model interpretability by preserving the physicochemical meanings of original molecular descriptors without generation of new variables. We also applied a weighted Euclidean distance method to mine the data most relevant to the predicted targets by quantifying the contribution of each feature, thereby the prediction accuracy was improved. On the basis of above data processing, we developed artificial neural network (ANN) models for predicting the life-cycle environmental impacts of chemicals with R2 values of 0.81, 0.81, 0.84, 0.75, 0.73, and 0.86 for global warming, human health, metal depletion, freshwater ecotoxicity, particulate matter formation, and terrestrial acidification, respectively. The ML models were interpreted using the Shapley additive explanation method by quantifying the contribution of each input molecular descriptor to environmental impact categories. This work suggests that the combination of feature selection by MI-PI and source data selection based on weighted Euclidean distance has a promising potential to improve the accuracy and interpretability of the models for predicting the life-cycle environmental impacts of chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蒙奇路飞发布了新的文献求助10
1秒前
1秒前
zho应助xie采纳,获得10
3秒前
Acetonitrile完成签到,获得积分10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
Yziii应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
wy.he应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得100
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
ber应助科研通管家采纳,获得10
4秒前
大仙发布了新的文献求助10
4秒前
liangmao应助科研通管家采纳,获得10
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
xjcy应助马佳凯采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
SciGPT应助科研通管家采纳,获得30
5秒前
orixero应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
李响响发布了新的文献求助10
6秒前
6秒前
ShenghuiH完成签到,获得积分20
7秒前
Markming发布了新的文献求助10
7秒前
9秒前
lym发布了新的文献求助10
9秒前
小羊羊完成签到,获得积分10
9秒前
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291911
求助须知:如何正确求助?哪些是违规求助? 2928394
关于积分的说明 8436718
捐赠科研通 2600331
什么是DOI,文献DOI怎么找? 1419018
科研通“疑难数据库(出版商)”最低求助积分说明 660203
邀请新用户注册赠送积分活动 642849