Improved Machine Learning Models by Data Processing for Predicting Life-Cycle Environmental Impacts of Chemicals

可解释性 特征选择 机器学习 人工神经网络 人工智能 计算机科学 特征(语言学) 生命周期评估 选择(遗传算法) 分子描述符 数据挖掘 滤波器(信号处理) 重采样 欧几里德距离 数量结构-活动关系 哲学 宏观经济学 语言学 经济 生产(经济) 计算机视觉
作者
Ye Sun,Xiuheng Wang,Nanqi Ren,Yanbiao Liu,Shijie You
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (8): 3434-3444 被引量:15
标识
DOI:10.1021/acs.est.2c04945
摘要

Machine learning (ML) provides an efficient manner for rapid prediction of the life-cycle environmental impacts of chemicals, but challenges remain due to low prediction accuracy and poor interpretability of the models. To address these issues, we focused on data processing by using a mutual information-permutation importance (MI-PI) feature selection method to filter out irrelevant molecular descriptors from the input data, which improved the model interpretability by preserving the physicochemical meanings of original molecular descriptors without generation of new variables. We also applied a weighted Euclidean distance method to mine the data most relevant to the predicted targets by quantifying the contribution of each feature, thereby the prediction accuracy was improved. On the basis of above data processing, we developed artificial neural network (ANN) models for predicting the life-cycle environmental impacts of chemicals with R2 values of 0.81, 0.81, 0.84, 0.75, 0.73, and 0.86 for global warming, human health, metal depletion, freshwater ecotoxicity, particulate matter formation, and terrestrial acidification, respectively. The ML models were interpreted using the Shapley additive explanation method by quantifying the contribution of each input molecular descriptor to environmental impact categories. This work suggests that the combination of feature selection by MI-PI and source data selection based on weighted Euclidean distance has a promising potential to improve the accuracy and interpretability of the models for predicting the life-cycle environmental impacts of chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
SciGPT应助泡芙采纳,获得10
1秒前
1秒前
1秒前
2秒前
jf完成签到 ,获得积分10
2秒前
2秒前
3秒前
邓炎林发布了新的文献求助10
3秒前
思源应助xxl采纳,获得10
3秒前
安详绿草完成签到,获得积分10
3秒前
jgs完成签到,获得积分10
4秒前
自信晟睿完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
Dyc完成签到,获得积分10
6秒前
yznfly应助奔流的河采纳,获得30
6秒前
果实发布了新的文献求助30
7秒前
7秒前
7秒前
7秒前
思源应助jouholly采纳,获得10
8秒前
小魏发布了新的文献求助10
8秒前
彩色冥幽发布了新的文献求助10
9秒前
woshidahunzi发布了新的文献求助10
9秒前
ceds完成签到,获得积分10
10秒前
可爱的菠萝完成签到,获得积分10
10秒前
10秒前
现代的bb完成签到,获得积分10
11秒前
11秒前
罗马狼王完成签到,获得积分20
11秒前
12秒前
12秒前
Csy完成签到,获得积分10
13秒前
笨笨中心发布了新的文献求助10
13秒前
14秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149