Multiscale molecular dynamics simulations predict arachidonic acid binding sites in human ASIC1a and ASIC3 transmembrane domains

酸敏离子通道 分子动力学 花生四烯酸 生物物理学 离子通道 化学 跨膜蛋白 跨膜结构域 蛋白质结构 生物化学 氨基酸 生物 计算化学 受体
作者
Anna Ananchenko,Maria Musgaard
出处
期刊:The Journal of General Physiology [The Rockefeller University Press]
卷期号:155 (3) 被引量:1
标识
DOI:10.1085/jgp.202213259
摘要

Acid-sensing ion channels (ASICs) play important roles in inflammatory pathways by conducting ions across the neuronal membrane in response to proton binding under acidic conditions. Recent studies have shown that ASICs can be modulated by arachidonic acid (AA), and, in the case of the ASIC3 subtype, even activated by AA at physiological pH. However, the mechanism by which these fatty acids act on the channel is still unknown. Here, we have used multiscale molecular dynamics simulations to predict a putative, general binding region of AA to models of the human ASIC protein. We have identified, in agreement with recent studies, residues in the outer leaflet transmembrane region which interact with AA. In addition, despite their similar modulation, we observe subtle differences in the AA interaction pattern between human ASIC1a and human ASIC3, which can be reversed by mutating three key residues at the outer leaflet portion of TM1. We further probed interactions with these residues in hASIC3 using atomistic simulations and identified possible AA coordinating interactions; salt bridge interactions of AA with R65hASIC3 and R68hASIC3 and AA tail interactions with the Y58hASIC3 aromatic ring. We have shown that longer fatty acid tails with more double bonds have increased relative occupancy in this region of the channel, a finding supported by recent functional studies. We further proposed that the modulatory effect of AA on ASIC does not result from changes in local membrane curvature. Rather, we speculate that it may occur through structural changes to the ion channel upon AA binding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrYang完成签到,获得积分10
刚刚
浅浅完成签到,获得积分20
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
qingmoheng应助djbj2022采纳,获得10
3秒前
喵喵喵完成签到,获得积分10
3秒前
dioyut发布了新的文献求助10
3秒前
小立发布了新的文献求助10
4秒前
天天快乐应助Catalina_S采纳,获得30
4秒前
5秒前
狂野吐司完成签到 ,获得积分10
5秒前
Vincent完成签到,获得积分10
5秒前
5秒前
小马甲应助BO采纳,获得10
5秒前
绿鬼蓝完成签到 ,获得积分10
7秒前
科研通AI6应助可乐采纳,获得10
7秒前
小马甲应助Hhbbb采纳,获得10
7秒前
合适不悔发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
clownnn发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
fenghuo发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
青春梦完成签到 ,获得积分10
14秒前
阿美发布了新的文献求助10
14秒前
14秒前
14秒前
或许度发布了新的文献求助10
14秒前
15秒前
Ava应助WQ采纳,获得10
15秒前
田di完成签到 ,获得积分10
15秒前
溜溜蛋完成签到,获得积分10
15秒前
今后应助Dangdang采纳,获得10
16秒前
Akim应助孤存采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265