CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features

序列(生物学) RNA结合蛋白 计算机科学 计算生物学 稳健性(进化) 代表(政治) 嵌入 核糖核酸 人工智能 生物 遗传学 基因 政治学 政治 法学
作者
Lishen Zhang,Chengqian Lu,Min Zeng,Yaohang Li,Jianxin Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:8
标识
DOI:10.1093/bib/bbac530
摘要

Circular RNAs (circRNAs) are reverse-spliced and covalently closed RNAs. Their interactions with RNA-binding proteins (RBPs) have multiple effects on the progress of many diseases. Some computational methods are proposed to identify RBP binding sites on circRNAs but suffer from insufficient accuracy, robustness and explanation. In this study, we first take the characteristics of both RNA and RBP into consideration. We propose a method for discriminating circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features, called CRMSS. For circRNAs, we use sequence ${k}\hbox{-}{mer}$ embedding and the forming probabilities of local secondary structures as features. For RBPs, we combine sequence and structure frequencies of RNA-binding domain regions to generate features. We capture binding patterns with multi-scale residual blocks. With BiLSTM and attention mechanism, we obtain the contextual information of high-level representation for circRNA-RBP binding. To validate the effectiveness of CRMSS, we compare its predictive performance with other methods on 37 RBPs. Taking the properties of both circRNAs and RBPs into account, CRMSS achieves superior performance over state-of-the-art methods. In the case study, our model provides reliable predictions and correctly identifies experimentally verified circRNA-RBP pairs. The code of CRMSS is freely available at https://github.com/BioinformaticsCSU/CRMSS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yaya发布了新的文献求助10
1秒前
田鑫智完成签到,获得积分10
1秒前
2秒前
Sommer完成签到 ,获得积分10
2秒前
Jason发布了新的文献求助10
2秒前
传奇3应助Luobing采纳,获得10
4秒前
4秒前
LMH发布了新的文献求助10
4秒前
伊人不羁发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
Dr_Zhan完成签到 ,获得积分10
7秒前
小马哥发布了新的文献求助10
7秒前
8秒前
8秒前
iiiyyy发布了新的文献求助10
9秒前
二智娃娃发布了新的文献求助10
9秒前
10秒前
pluto应助cjw采纳,获得10
10秒前
SciGPT应助受伤惋庭采纳,获得10
11秒前
SciGPT应助xiao采纳,获得10
11秒前
11秒前
li发布了新的文献求助10
12秒前
风中凌旋应助IAN采纳,获得10
13秒前
Shirley完成签到,获得积分10
13秒前
liulei_441发布了新的文献求助10
13秒前
13秒前
wsb76完成签到 ,获得积分10
14秒前
14秒前
14秒前
光亮幻巧发布了新的文献求助10
15秒前
15秒前
甘霖发布了新的文献求助20
15秒前
Ava应助郭文钦采纳,获得10
15秒前
16秒前
凶狠的盼柳完成签到,获得积分10
16秒前
Belinda发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578482
求助须知:如何正确求助?哪些是违规求助? 4663316
关于积分的说明 14745953
捐赠科研通 4604100
什么是DOI,文献DOI怎么找? 2526837
邀请新用户注册赠送积分活动 1496440
关于科研通互助平台的介绍 1465718