CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features

序列(生物学) RNA结合蛋白 计算机科学 计算生物学 稳健性(进化) 代表(政治) 嵌入 核糖核酸 人工智能 生物 遗传学 基因 政治学 政治 法学
作者
Lishen Zhang,Chengqian Lu,Min Zeng,Yaohang Li,Jianxin Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:8
标识
DOI:10.1093/bib/bbac530
摘要

Circular RNAs (circRNAs) are reverse-spliced and covalently closed RNAs. Their interactions with RNA-binding proteins (RBPs) have multiple effects on the progress of many diseases. Some computational methods are proposed to identify RBP binding sites on circRNAs but suffer from insufficient accuracy, robustness and explanation. In this study, we first take the characteristics of both RNA and RBP into consideration. We propose a method for discriminating circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features, called CRMSS. For circRNAs, we use sequence ${k}\hbox{-}{mer}$ embedding and the forming probabilities of local secondary structures as features. For RBPs, we combine sequence and structure frequencies of RNA-binding domain regions to generate features. We capture binding patterns with multi-scale residual blocks. With BiLSTM and attention mechanism, we obtain the contextual information of high-level representation for circRNA-RBP binding. To validate the effectiveness of CRMSS, we compare its predictive performance with other methods on 37 RBPs. Taking the properties of both circRNAs and RBPs into account, CRMSS achieves superior performance over state-of-the-art methods. In the case study, our model provides reliable predictions and correctly identifies experimentally verified circRNA-RBP pairs. The code of CRMSS is freely available at https://github.com/BioinformaticsCSU/CRMSS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ali完成签到,获得积分10
1秒前
adxyz完成签到,获得积分10
1秒前
寻悦发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
xh发布了新的文献求助10
5秒前
牛tongxue完成签到,获得积分10
5秒前
5秒前
科研喵发布了新的文献求助10
6秒前
7秒前
寇kk完成签到,获得积分10
8秒前
灯火完成签到,获得积分10
9秒前
9秒前
9秒前
于梦寒完成签到,获得积分10
9秒前
10秒前
evvj发布了新的文献求助10
10秒前
10秒前
吃不饱发布了新的文献求助10
10秒前
11秒前
光明磊落完成签到,获得积分20
12秒前
小太阳发布了新的文献求助10
12秒前
jzh发布了新的文献求助10
13秒前
文艺过客发布了新的文献求助10
13秒前
科研通AI6应助Han采纳,获得10
14秒前
三岁应助ly浩采纳,获得10
14秒前
Feiguo_Fang完成签到,获得积分20
14秒前
14秒前
不想写发布了新的文献求助10
14秒前
15秒前
英姑应助Sun采纳,获得10
15秒前
17秒前
Amuro完成签到,获得积分10
17秒前
17秒前
19秒前
20秒前
20秒前
黄志平完成签到 ,获得积分10
20秒前
共享精神应助Captain采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643147
求助须知:如何正确求助?哪些是违规求助? 4760738
关于积分的说明 15020082
捐赠科研通 4801576
什么是DOI,文献DOI怎么找? 2566843
邀请新用户注册赠送积分活动 1524735
关于科研通互助平台的介绍 1484276