CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features

序列(生物学) RNA结合蛋白 计算机科学 计算生物学 稳健性(进化) 代表(政治) 嵌入 核糖核酸 人工智能 生物 遗传学 基因 政治学 政治 法学
作者
Lishen Zhang,Chengqian Lu,Min Zeng,Yaohang Li,Jianxin Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:8
标识
DOI:10.1093/bib/bbac530
摘要

Circular RNAs (circRNAs) are reverse-spliced and covalently closed RNAs. Their interactions with RNA-binding proteins (RBPs) have multiple effects on the progress of many diseases. Some computational methods are proposed to identify RBP binding sites on circRNAs but suffer from insufficient accuracy, robustness and explanation. In this study, we first take the characteristics of both RNA and RBP into consideration. We propose a method for discriminating circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features, called CRMSS. For circRNAs, we use sequence ${k}\hbox{-}{mer}$ embedding and the forming probabilities of local secondary structures as features. For RBPs, we combine sequence and structure frequencies of RNA-binding domain regions to generate features. We capture binding patterns with multi-scale residual blocks. With BiLSTM and attention mechanism, we obtain the contextual information of high-level representation for circRNA-RBP binding. To validate the effectiveness of CRMSS, we compare its predictive performance with other methods on 37 RBPs. Taking the properties of both circRNAs and RBPs into account, CRMSS achieves superior performance over state-of-the-art methods. In the case study, our model provides reliable predictions and correctly identifies experimentally verified circRNA-RBP pairs. The code of CRMSS is freely available at https://github.com/BioinformaticsCSU/CRMSS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等等小ur完成签到,获得积分20
刚刚
112233发布了新的文献求助10
刚刚
橘子发布了新的文献求助10
刚刚
一个小菜鸡完成签到,获得积分10
1秒前
2秒前
2秒前
xw发布了新的文献求助100
2秒前
hhhhhhan616完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
7秒前
十三号失眠完成签到,获得积分10
8秒前
zhang08完成签到,获得积分10
9秒前
9秒前
Song发布了新的文献求助10
10秒前
13秒前
大模型应助li采纳,获得10
14秒前
Aki发布了新的文献求助10
14秒前
17秒前
18秒前
小屁发布了新的文献求助10
18秒前
科研通AI2S应助小喵采纳,获得10
19秒前
橘子完成签到,获得积分10
20秒前
20秒前
21秒前
无花果应助白英采纳,获得10
22秒前
路过的风景完成签到 ,获得积分10
22秒前
wanci应助娇你当第一采纳,获得10
22秒前
慕青应助Song采纳,获得10
23秒前
23秒前
春杪发布了新的文献求助10
23秒前
vadfdfb发布了新的文献求助10
24秒前
坚强的代曼完成签到,获得积分10
24秒前
25秒前
25秒前
木木发布了新的文献求助10
26秒前
Dead Cells完成签到,获得积分10
26秒前
27秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138178
求助须知:如何正确求助?哪些是违规求助? 2789056
关于积分的说明 7790034
捐赠科研通 2445505
什么是DOI,文献DOI怎么找? 1300440
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046