已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MaMiNet: Memory-attended multi-inference network for surface-defect detection

推论 计算机科学 人工智能 保险丝(电气) 模式识别(心理学) 像素 特征(语言学) 注释 领域(数学) 数据挖掘 代表(政治) 机器学习 计算机视觉 工程类 数学 哲学 纯数学 法学 电气工程 政治 语言学 政治学
作者
Xiaoyan Luo,Sen Li,Yu Wang,Tiancheng Zhan,Xiaofeng Shi,Bo Liu
出处
期刊:Computers in Industry [Elsevier]
卷期号:145: 103834-103834 被引量:8
标识
DOI:10.1016/j.compind.2022.103834
摘要

Surface-defect detection has attracted extensive attention in the field of industrial inspection but remains challenging, owing to the rare occurrence and the various appearance of the defects. Promising results have been obtained by supervised methods but they require a large number of pixel-level annotations which are very costly to obtain. This paper proposes a memory-attended multi-inference network (MaMiNet) for image-level defect detection. MaMiNet integrates image classification with saliency detection and can accommodate a variable number of samples with pixel-label annotations along with image-level annotation. Considering the various defect appearance, a memory attention feature enhancement module is exploited to capture the attention information not only within one sample but across whole samples and seek better representation ability for the defective regions. A multi-inference aware aggregation module is proposed to fuse features with different inference hints and obtain more comprehensive features. The proposed method is extensively validated on four datasets and better experimental results are obtained compared with other state-of-the-art methods, especially in weak supervision mode without any pixel-level annotation. The efficacy of the proposed modules is validated through ablation studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助走地坤采纳,获得10
刚刚
科研通AI6应助冰红茶采纳,获得10
1秒前
红茶猫完成签到,获得积分10
1秒前
呵呵贺哈发布了新的文献求助10
1秒前
科研韭菜完成签到 ,获得积分10
5秒前
颢懿完成签到 ,获得积分10
5秒前
星空剪影完成签到,获得积分10
7秒前
8秒前
CipherSage应助粥粥采纳,获得20
8秒前
ccc发布了新的文献求助200
10秒前
葛怀锐完成签到 ,获得积分10
11秒前
xxl关注了科研通微信公众号
12秒前
13秒前
从容映易完成签到,获得积分10
14秒前
17秒前
18秒前
18秒前
陶醉紫菜发布了新的文献求助10
20秒前
淡然的行完成签到,获得积分10
22秒前
22秒前
白杨发布了新的文献求助10
25秒前
xxl发布了新的文献求助10
27秒前
28秒前
28秒前
doctor2023完成签到,获得积分10
28秒前
29秒前
30秒前
美好善斓完成签到 ,获得积分10
31秒前
舒服的猫咪完成签到,获得积分10
31秒前
Unicorn完成签到,获得积分10
33秒前
可靠的怜珊完成签到,获得积分10
34秒前
34秒前
34秒前
Ray发布了新的文献求助10
35秒前
欢呼宛秋完成签到,获得积分10
36秒前
39秒前
啦啦啦就好完成签到,获得积分10
39秒前
bao完成签到,获得积分10
40秒前
小六六六发布了新的文献求助10
42秒前
Dsunflower完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356315
求助须知:如何正确求助?哪些是违规求助? 4488125
关于积分的说明 13971650
捐赠科研通 4388976
什么是DOI,文献DOI怎么找? 2411319
邀请新用户注册赠送积分活动 1403874
关于科研通互助平台的介绍 1377700