亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid CNN-Transformer Features for Visual Place Recognition

计算机科学 人工智能 地点 卷积神经网络 MNIST数据库 模式识别(心理学) 变压器 编码器 特征学习 特征提取 计算机视觉 人工神经网络 量子力学 操作系统 物理 哲学 语言学 电压
作者
Yuwei Wang,Yuanying Qiu,Peitao Cheng,Junyu Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1109-1122 被引量:32
标识
DOI:10.1109/tcsvt.2022.3212434
摘要

Visual place recognition is a challenging problem in robotics and autonomous systems because the scene undergoes appearance and viewpoint changes in a changing world. Existing state-of-the-art methods heavily rely on CNN-based architectures. However, CNN cannot effectively model image spatial structure information due to the inherent locality. To address this issue, this paper proposes a novel Transformer-based place recognition method to combine local details, spatial context, and semantic information for image feature embedding. Firstly, to overcome the inherent locality of the convolutional neural network (CNN), a hybrid CNN-Transformer feature extraction network is introduced. The network utilizes the feature pyramid based on CNN to obtain the detailed visual understanding, while using the vision Transformer to model image contextual information and aggregate task-related features dynamically. Specifically, the multi-level output tokens from the Transformer are fed into a single Transformer encoder block to fuse multi-scale spatial information. Secondly, to acquire the multi-scale semantic information, a global semantic NetVLAD aggregation strategy is constructed. This strategy employs semantic enhanced NetVLAD, imposing prior knowledge on the terms of the Vector of Locally Aggregated Descriptors (VLAD), to aggregate multi-level token maps, and further concatenates the multi-level semantic features globally. Finally, to alleviate the disadvantage that the fixed margin of triplet loss leads to the suboptimal convergence, an adaptive triplet loss with dynamic margin is proposed. Extensive experiments on public datasets show that the learned features are robust to appearance and viewpoint changes and achieve promising performance compared to state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助ljj001ljj采纳,获得10
18秒前
文明8完成签到 ,获得积分10
36秒前
xuan完成签到,获得积分10
58秒前
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
gexzygg发布了新的文献求助10
3分钟前
gszy1975完成签到,获得积分10
3分钟前
3分钟前
FashionBoy应助liwen采纳,获得10
3分钟前
Cx完成签到,获得积分10
3分钟前
3分钟前
3分钟前
liwen发布了新的文献求助10
4分钟前
George发布了新的文献求助10
4分钟前
4分钟前
4分钟前
George完成签到,获得积分10
4分钟前
吴端完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
情怀应助玛卡巴卡采纳,获得10
5分钟前
喻初原完成签到 ,获得积分10
5分钟前
阳光的丹雪完成签到,获得积分10
5分钟前
5分钟前
爆米花应助斯提亚拉采纳,获得10
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
斯提亚拉发布了新的文献求助10
6分钟前
天天快乐应助Tree_QD采纳,获得10
6分钟前
斯提亚拉完成签到,获得积分10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554946
求助须知:如何正确求助?哪些是违规求助? 4639538
关于积分的说明 14656291
捐赠科研通 4581453
什么是DOI,文献DOI怎么找? 2512813
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503