Hybrid CNN-Transformer Features for Visual Place Recognition

计算机科学 人工智能 地点 卷积神经网络 MNIST数据库 模式识别(心理学) 变压器 编码器 特征学习 计算机视觉 深度学习 量子力学 操作系统 物理 哲学 语言学 电压
作者
Yuwei Wang,Yuanying Qiu,Peitao Cheng,Junyu Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 1109-1122 被引量:14
标识
DOI:10.1109/tcsvt.2022.3212434
摘要

Visual place recognition is a challenging problem in robotics and autonomous systems because the scene undergoes appearance and viewpoint changes in a changing world. Existing state-of-the-art methods heavily rely on CNN-based architectures. However, CNN cannot effectively model image spatial structure information due to the inherent locality. To address this issue, this paper proposes a novel Transformer-based place recognition method to combine local details, spatial context, and semantic information for image feature embedding. Firstly, to overcome the inherent locality of the convolutional neural network (CNN), a hybrid CNN-Transformer feature extraction network is introduced. The network utilizes the feature pyramid based on CNN to obtain the detailed visual understanding, while using the vision Transformer to model image contextual information and aggregate task-related features dynamically. Specifically, the multi-level output tokens from the Transformer are fed into a single Transformer encoder block to fuse multi-scale spatial information. Secondly, to acquire the multi-scale semantic information, a global semantic NetVLAD aggregation strategy is constructed. This strategy employs semantic enhanced NetVLAD, imposing prior knowledge on the terms of the Vector of Locally Aggregated Descriptors (VLAD), to aggregate multi-level token maps, and further concatenates the multi-level semantic features globally. Finally, to alleviate the disadvantage that the fixed margin of triplet loss leads to the suboptimal convergence, an adaptive triplet loss with dynamic margin is proposed. Extensive experiments on public datasets show that the learned features are robust to appearance and viewpoint changes and achieve promising performance compared to state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
93给93的求助进行了留言
刚刚
坚强的道之完成签到 ,获得积分10
1秒前
高贵的如曼应助魔幻嚓茶采纳,获得10
1秒前
1秒前
1秒前
Zwj发布了新的文献求助10
1秒前
搜集达人应助Hang采纳,获得10
1秒前
雪流星发布了新的文献求助10
2秒前
火星上的小虾米完成签到,获得积分10
2秒前
小蘑菇应助sby19采纳,获得10
2秒前
平淡小鸭子完成签到,获得积分10
3秒前
3秒前
3秒前
JulyChen发布了新的文献求助10
4秒前
欣慰扬完成签到,获得积分10
4秒前
OutMan完成签到,获得积分10
4秒前
英俊的铭应助ydk采纳,获得10
5秒前
香蕉觅云应助宋宋采纳,获得10
5秒前
小巧语雪发布了新的文献求助10
5秒前
斯文败类应助Lucy采纳,获得10
5秒前
6秒前
雪糕发布了新的文献求助10
6秒前
李健的小迷弟应助钟钟钟采纳,获得10
6秒前
情怀应助LXF采纳,获得10
7秒前
7秒前
CodeCraft应助熊大采纳,获得10
7秒前
OutMan发布了新的文献求助10
7秒前
7秒前
追寻的蓝血完成签到,获得积分20
8秒前
秦时明月发布了新的文献求助10
9秒前
9秒前
zwy完成签到,获得积分10
9秒前
9秒前
Zwj完成签到,获得积分10
9秒前
powozhi13579发布了新的文献求助10
9秒前
11秒前
丘比特应助小巧语雪采纳,获得10
11秒前
Kakaluote发布了新的文献求助20
11秒前
Jiang发布了新的文献求助10
11秒前
Ava应助HAHA采纳,获得10
12秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227802
求助须知:如何正确求助?哪些是违规求助? 2875741
关于积分的说明 8192365
捐赠科研通 2542879
什么是DOI,文献DOI怎么找? 1373241
科研通“疑难数据库(出版商)”最低求助积分说明 646713
邀请新用户注册赠送积分活动 621181