Predicting N2 lymph node metastasis in presurgical stage I‐II non‐small cell lung cancer using multiview radiomics and deep learning method

列线图 接收机工作特性 特征选择 单变量 人工智能 阶段(地层学) Lasso(编程语言) 计算机科学 肺癌 淋巴结 放射科 医学 模式识别(心理学) 机器学习 多元统计 肿瘤科 病理 万维网 古生物学 生物
作者
Hanfei Zhang,Meiyan Liao,Qun Guo,Jun Chen,Shan Wang,Song‐Mei Liu,Feng Xiao
出处
期刊:Medical Physics [Wiley]
卷期号:50 (4): 2049-2060 被引量:11
标识
DOI:10.1002/mp.16177
摘要

Accurate diagnosis of N2 lymph node status of the resectable stage I-II non-small cell lung cancer (NSCLC) before surgery is crucial, while there is lack of corresponding method clinically.To develop and validate a model to quantitively predict the N2 lymph node metastasis in presurgical clinical stage I-II NSCLC using multiview radiomics and deep learning method.In this study, 140 NSCLC patients were enrolled and randomly divided into training and test sets. Univariate and multiple analysis method were used step by step to establish the clinical model; Then a multiview radiomics modeling scheme was designed, in which the optimal input feature set was determined by subcategorizing radiomics features (C1: original; C2: LoG and C3: wavelet) and comparison of corresponding radiomics model. The minimum-redundancy maximum-relevance (mRMR) selection and the least absolute shrinkage and selection operator (LASSO) algorithm were used for the feature selection and construction of each radiomics model (Rad). Next, an end-to-end ResNet18 architecture and transfer learning techniques were designed to construct a deep learning model (DL). Subsequently, the screened clinical risk factors and constructed Rad and DL models were combined and compared and a nomogram was constructed. Finally, the diagnostic performance of all constructed models were evaluated and compared using receiver operating characteristic curve (ROC) analysis, Delong test, Calibration analysis, Hosmer-Lemeshow test, and decision curves, respectively.Carcinoma embryonic antigen (CEA) level and spiculation were screened to make up the Clinical model, while seven radiomics features in the optimal input feature set C2 + C3 were selected to construct the Rad. DL was constructed by training on 1.8 million natural images and small sample data of our N2 lymph node volume of interest (VOI) images. Except for the Clinical model, all other models showed good predictive accuracy and consistency in both training set and test set. DL (area under curve (AUC): 0.83) was better than Rad (AUC: 0.76) in predictive accuracy, but their difference was not significant (p = 0.45). The combined models showed better diagnostic performance than the model only clinical or image risk factors were used (AUC for Clinical, Rad + DL, Rad + Clinical, DL + Clinical, and Rad + DL + Clinical were respectively 0.66, 0.86, 0.82, 0.86, and 0.88). Finally, the Rad + DL + Clinical model with the best diagnostic performance was selected to draw the final nomogram for clinical use.This study proposes a nomogram based on multiview radiomics, deep learning, and clinical features that can be efficiently used to quantitively predict presurgical N2 diseases in patients with clinical stage I-II NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李爱国应助小田睡不醒采纳,获得10
1秒前
rhei完成签到,获得积分20
1秒前
Zoe完成签到,获得积分10
3秒前
张佳佳完成签到,获得积分10
3秒前
仇夜羽完成签到 ,获得积分10
5秒前
斯李iko发布了新的文献求助10
5秒前
5秒前
余海川完成签到,获得积分10
5秒前
桐桐应助合适的芸遥采纳,获得10
5秒前
5秒前
5秒前
可爱的函函应助茶茶采纳,获得10
6秒前
王洵完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
小叮当关注了科研通微信公众号
8秒前
ding应助斯李iko采纳,获得10
9秒前
10秒前
10秒前
poiuy完成签到 ,获得积分10
10秒前
顾矜应助可靠的纸飞机采纳,获得10
11秒前
Hlinc发布了新的文献求助10
11秒前
11秒前
12秒前
回忆告白完成签到,获得积分10
13秒前
wanci应助我每天都好酷采纳,获得10
13秒前
13秒前
14秒前
14秒前
15秒前
慕青应助神仙渔采纳,获得10
15秒前
上官若男应助mmyhn采纳,获得10
16秒前
哆啦η梦发布了新的文献求助10
16秒前
17秒前
爱撒娇的鱼完成签到,获得积分10
17秒前
17秒前
FashionBoy应助专注的安莲采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135577
求助须知:如何正确求助?哪些是违规求助? 2786454
关于积分的说明 7777484
捐赠科研通 2442441
什么是DOI,文献DOI怎么找? 1298558
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847