Predicting N2 lymph node metastasis in presurgical stage I‐II non‐small cell lung cancer using multiview radiomics and deep learning method

列线图 接收机工作特性 特征选择 单变量 人工智能 阶段(地层学) Lasso(编程语言) 计算机科学 肺癌 淋巴结 放射科 医学 模式识别(心理学) 机器学习 多元统计 肿瘤科 病理 万维网 古生物学 生物
作者
Hanfei Zhang,Meiyan Liao,Qun Guo,Jun Chen,Shan Wang,Song‐Mei Liu,Feng Xiao
出处
期刊:Medical Physics [Wiley]
卷期号:50 (4): 2049-2060 被引量:16
标识
DOI:10.1002/mp.16177
摘要

Accurate diagnosis of N2 lymph node status of the resectable stage I-II non-small cell lung cancer (NSCLC) before surgery is crucial, while there is lack of corresponding method clinically.To develop and validate a model to quantitively predict the N2 lymph node metastasis in presurgical clinical stage I-II NSCLC using multiview radiomics and deep learning method.In this study, 140 NSCLC patients were enrolled and randomly divided into training and test sets. Univariate and multiple analysis method were used step by step to establish the clinical model; Then a multiview radiomics modeling scheme was designed, in which the optimal input feature set was determined by subcategorizing radiomics features (C1: original; C2: LoG and C3: wavelet) and comparison of corresponding radiomics model. The minimum-redundancy maximum-relevance (mRMR) selection and the least absolute shrinkage and selection operator (LASSO) algorithm were used for the feature selection and construction of each radiomics model (Rad). Next, an end-to-end ResNet18 architecture and transfer learning techniques were designed to construct a deep learning model (DL). Subsequently, the screened clinical risk factors and constructed Rad and DL models were combined and compared and a nomogram was constructed. Finally, the diagnostic performance of all constructed models were evaluated and compared using receiver operating characteristic curve (ROC) analysis, Delong test, Calibration analysis, Hosmer-Lemeshow test, and decision curves, respectively.Carcinoma embryonic antigen (CEA) level and spiculation were screened to make up the Clinical model, while seven radiomics features in the optimal input feature set C2 + C3 were selected to construct the Rad. DL was constructed by training on 1.8 million natural images and small sample data of our N2 lymph node volume of interest (VOI) images. Except for the Clinical model, all other models showed good predictive accuracy and consistency in both training set and test set. DL (area under curve (AUC): 0.83) was better than Rad (AUC: 0.76) in predictive accuracy, but their difference was not significant (p = 0.45). The combined models showed better diagnostic performance than the model only clinical or image risk factors were used (AUC for Clinical, Rad + DL, Rad + Clinical, DL + Clinical, and Rad + DL + Clinical were respectively 0.66, 0.86, 0.82, 0.86, and 0.88). Finally, the Rad + DL + Clinical model with the best diagnostic performance was selected to draw the final nomogram for clinical use.This study proposes a nomogram based on multiview radiomics, deep learning, and clinical features that can be efficiently used to quantitively predict presurgical N2 diseases in patients with clinical stage I-II NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
完美世界应助123采纳,获得10
1秒前
爱笑以松完成签到,获得积分10
1秒前
orixero应助优雅狗采纳,获得10
2秒前
西瓜草莓火龙果完成签到,获得积分10
2秒前
3秒前
火翟丰丰山心完成签到,获得积分10
4秒前
Mike14完成签到,获得积分10
5秒前
5秒前
善良的沉鱼完成签到,获得积分10
5秒前
迷人的Jack发布了新的文献求助10
6秒前
6秒前
6秒前
千夜发布了新的文献求助10
6秒前
丘比特应助潘潘采纳,获得10
6秒前
自由大叔发布了新的文献求助10
7秒前
孙燕应助科研通管家采纳,获得10
7秒前
夏宇应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
灿灿应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
wy.he应助科研通管家采纳,获得10
8秒前
Y先生应助科研通管家采纳,获得20
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
Y先生应助科研通管家采纳,获得20
8秒前
孙燕应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
8秒前
灿灿应助科研通管家采纳,获得10
9秒前
英姑应助失眠成危采纳,获得10
9秒前
余真谛应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
wu8577应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352