亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting N2 lymph node metastasis in presurgical stage I‐II non‐small cell lung cancer using multiview radiomics and deep learning method

列线图 接收机工作特性 特征选择 单变量 人工智能 阶段(地层学) Lasso(编程语言) 计算机科学 肺癌 淋巴结 放射科 医学 模式识别(心理学) 机器学习 多元统计 肿瘤科 病理 万维网 古生物学 生物
作者
Hanfei Zhang,Meiyan Liao,Qun Guo,Jun Chen,Shan Wang,Song‐Mei Liu,Feng Xiao
出处
期刊:Medical Physics [Wiley]
卷期号:50 (4): 2049-2060 被引量:16
标识
DOI:10.1002/mp.16177
摘要

Accurate diagnosis of N2 lymph node status of the resectable stage I-II non-small cell lung cancer (NSCLC) before surgery is crucial, while there is lack of corresponding method clinically.To develop and validate a model to quantitively predict the N2 lymph node metastasis in presurgical clinical stage I-II NSCLC using multiview radiomics and deep learning method.In this study, 140 NSCLC patients were enrolled and randomly divided into training and test sets. Univariate and multiple analysis method were used step by step to establish the clinical model; Then a multiview radiomics modeling scheme was designed, in which the optimal input feature set was determined by subcategorizing radiomics features (C1: original; C2: LoG and C3: wavelet) and comparison of corresponding radiomics model. The minimum-redundancy maximum-relevance (mRMR) selection and the least absolute shrinkage and selection operator (LASSO) algorithm were used for the feature selection and construction of each radiomics model (Rad). Next, an end-to-end ResNet18 architecture and transfer learning techniques were designed to construct a deep learning model (DL). Subsequently, the screened clinical risk factors and constructed Rad and DL models were combined and compared and a nomogram was constructed. Finally, the diagnostic performance of all constructed models were evaluated and compared using receiver operating characteristic curve (ROC) analysis, Delong test, Calibration analysis, Hosmer-Lemeshow test, and decision curves, respectively.Carcinoma embryonic antigen (CEA) level and spiculation were screened to make up the Clinical model, while seven radiomics features in the optimal input feature set C2 + C3 were selected to construct the Rad. DL was constructed by training on 1.8 million natural images and small sample data of our N2 lymph node volume of interest (VOI) images. Except for the Clinical model, all other models showed good predictive accuracy and consistency in both training set and test set. DL (area under curve (AUC): 0.83) was better than Rad (AUC: 0.76) in predictive accuracy, but their difference was not significant (p = 0.45). The combined models showed better diagnostic performance than the model only clinical or image risk factors were used (AUC for Clinical, Rad + DL, Rad + Clinical, DL + Clinical, and Rad + DL + Clinical were respectively 0.66, 0.86, 0.82, 0.86, and 0.88). Finally, the Rad + DL + Clinical model with the best diagnostic performance was selected to draw the final nomogram for clinical use.This study proposes a nomogram based on multiview radiomics, deep learning, and clinical features that can be efficiently used to quantitively predict presurgical N2 diseases in patients with clinical stage I-II NSCLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
10秒前
阳光大山完成签到 ,获得积分10
18秒前
完美世界应助明芬采纳,获得10
41秒前
慕青应助nito采纳,获得10
52秒前
领导范儿应助小粒橙采纳,获得10
1分钟前
1分钟前
momo发布了新的文献求助10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Chris完成签到 ,获得积分10
2分钟前
2分钟前
明理太君发布了新的文献求助10
2分钟前
3分钟前
3分钟前
小粒橙发布了新的文献求助10
3分钟前
ljx完成签到,获得积分10
3分钟前
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
Tingshan完成签到,获得积分10
3分钟前
4分钟前
BINBIN完成签到 ,获得积分10
5分钟前
汉堡包应助蛐蛐采纳,获得10
5分钟前
Jay完成签到,获得积分10
5分钟前
完美世界应助史昊昊采纳,获得10
5分钟前
5分钟前
史昊昊发布了新的文献求助10
5分钟前
叽了咕噜完成签到,获得积分10
5分钟前
JamesPei应助科研通管家采纳,获得10
5分钟前
完美世界应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
6分钟前
蛐蛐完成签到,获得积分20
6分钟前
蛐蛐发布了新的文献求助10
6分钟前
少年锦时完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599798
求助须知:如何正确求助?哪些是违规求助? 4685540
关于积分的说明 14838598
捐赠科研通 4671239
什么是DOI,文献DOI怎么找? 2538269
邀请新用户注册赠送积分活动 1505536
关于科研通互助平台的介绍 1470924