Predicting N2 lymph node metastasis in presurgical stage I‐II non‐small cell lung cancer using multiview radiomics and deep learning method

列线图 接收机工作特性 特征选择 单变量 人工智能 阶段(地层学) Lasso(编程语言) 计算机科学 肺癌 淋巴结 放射科 医学 模式识别(心理学) 机器学习 多元统计 肿瘤科 病理 万维网 古生物学 生物
作者
Hanfei Zhang,Meiyan Liao,Qun Guo,Jun Chen,Shan Wang,Song‐Mei Liu,Feng Xiao
出处
期刊:Medical Physics [Wiley]
卷期号:50 (4): 2049-2060 被引量:16
标识
DOI:10.1002/mp.16177
摘要

Accurate diagnosis of N2 lymph node status of the resectable stage I-II non-small cell lung cancer (NSCLC) before surgery is crucial, while there is lack of corresponding method clinically.To develop and validate a model to quantitively predict the N2 lymph node metastasis in presurgical clinical stage I-II NSCLC using multiview radiomics and deep learning method.In this study, 140 NSCLC patients were enrolled and randomly divided into training and test sets. Univariate and multiple analysis method were used step by step to establish the clinical model; Then a multiview radiomics modeling scheme was designed, in which the optimal input feature set was determined by subcategorizing radiomics features (C1: original; C2: LoG and C3: wavelet) and comparison of corresponding radiomics model. The minimum-redundancy maximum-relevance (mRMR) selection and the least absolute shrinkage and selection operator (LASSO) algorithm were used for the feature selection and construction of each radiomics model (Rad). Next, an end-to-end ResNet18 architecture and transfer learning techniques were designed to construct a deep learning model (DL). Subsequently, the screened clinical risk factors and constructed Rad and DL models were combined and compared and a nomogram was constructed. Finally, the diagnostic performance of all constructed models were evaluated and compared using receiver operating characteristic curve (ROC) analysis, Delong test, Calibration analysis, Hosmer-Lemeshow test, and decision curves, respectively.Carcinoma embryonic antigen (CEA) level and spiculation were screened to make up the Clinical model, while seven radiomics features in the optimal input feature set C2 + C3 were selected to construct the Rad. DL was constructed by training on 1.8 million natural images and small sample data of our N2 lymph node volume of interest (VOI) images. Except for the Clinical model, all other models showed good predictive accuracy and consistency in both training set and test set. DL (area under curve (AUC): 0.83) was better than Rad (AUC: 0.76) in predictive accuracy, but their difference was not significant (p = 0.45). The combined models showed better diagnostic performance than the model only clinical or image risk factors were used (AUC for Clinical, Rad + DL, Rad + Clinical, DL + Clinical, and Rad + DL + Clinical were respectively 0.66, 0.86, 0.82, 0.86, and 0.88). Finally, the Rad + DL + Clinical model with the best diagnostic performance was selected to draw the final nomogram for clinical use.This study proposes a nomogram based on multiview radiomics, deep learning, and clinical features that can be efficiently used to quantitively predict presurgical N2 diseases in patients with clinical stage I-II NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ruby于给Ruby于的求助进行了留言
刚刚
zhangmengqi完成签到 ,获得积分10
刚刚
夜已深发布了新的文献求助10
刚刚
1秒前
CC发布了新的文献求助10
1秒前
李爱国应助爱笑雨竹采纳,获得10
1秒前
被动科研发布了新的文献求助10
1秒前
共享精神应助Aco采纳,获得10
1秒前
小手拉大手完成签到,获得积分20
1秒前
yyt发布了新的文献求助10
1秒前
2秒前
伯赏雁蓉发布了新的文献求助10
2秒前
Jim发布了新的文献求助10
2秒前
小瑞发布了新的文献求助10
2秒前
2秒前
顺心凝天发布了新的文献求助10
3秒前
3秒前
徐昊雯发布了新的文献求助10
3秒前
4秒前
4秒前
叶梓发布了新的文献求助10
5秒前
Lucas应助一二采纳,获得10
5秒前
甜蜜念真发布了新的文献求助10
5秒前
Mikey完成签到,获得积分10
5秒前
5秒前
6秒前
脑洞疼应助yhao采纳,获得10
6秒前
Master_Ye发布了新的文献求助10
6秒前
SciGPT应助AJY采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
FashionBoy应助明理的小甜瓜采纳,获得10
7秒前
LMW应助cary采纳,获得10
7秒前
null应助cary采纳,获得10
7秒前
7秒前
地平线完成签到,获得积分10
7秒前
8秒前
ORANGE完成签到,获得积分10
8秒前
8秒前
9秒前
dwd1w发布了新的文献求助10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437