Continuous Estimation of Lower Limb Joint Angles From Multi-Stream Signals Based on Knowledge Tracing

计算机科学 人工智能 追踪 可解释性 组分(热力学) 模式识别(心理学) 信号(编程语言) 计算机视觉 机器人 热力学 操作系统 物理 程序设计语言
作者
Xin Zhou,Can Wang,Liming Zhang,Jiaqing Liu,Guoyuan Liang,Xinyu Wu
出处
期刊:IEEE robotics and automation letters 卷期号:8 (2): 951-957 被引量:6
标识
DOI:10.1109/lra.2023.3235683
摘要

Multi-stream signals are increasingly being used in robot-assisted rehabilitation training, where the timely and accurate prediction of a patient's motor intentions is frequently required to provide simultaneous and proportional control strategies. However, existing methods for motion intent prediction typically isolate signals from different modalities, resulting in a loss of signal traceability and interpretability. Therefore, we propose a multi-stream signal-fusion strategy based on knowledge tracing (MSKT). First, we collected surface electromyography, force myography, and vibroarthrography signals from the lower extremity and used different encoders to map these signals into a problem component, concept component, and identity token component. The process of human learning was then simulated using a knowledge-tracing strategy to reconstruct these components into new features. Finally, the reconstructed set of depth features was mapped to joint angles. We validated the performance of the proposed method using motion data from eight participants in different locomotion modes and compared the results to those of a temporal convolution network and long short-term memory networks. The results indicate that the MSKT achieves the lowest root-mean-squared error. This study demonstrates that the proposed knowledge-tracing-based strategy enables accurate continuous estimation for lower-limb exoskeleton rehabilitation robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼灵波完成签到,获得积分10
刚刚
怂宝儿完成签到,获得积分10
刚刚
瀚子发布了新的文献求助30
刚刚
科研通AI6应助22年春_采纳,获得10
1秒前
1秒前
Rainnn发布了新的文献求助10
1秒前
2秒前
Canon发布了新的文献求助10
2秒前
领导范儿应助HouShipeng采纳,获得10
4秒前
meimei完成签到 ,获得积分10
5秒前
bkagyin应助懒羊羊采纳,获得10
6秒前
7秒前
chen完成签到,获得积分10
7秒前
Owen应助renshiq采纳,获得10
7秒前
dmq完成签到 ,获得积分10
8秒前
Zzz发布了新的文献求助10
8秒前
小蘑菇应助Canon采纳,获得10
9秒前
Yyyyyyyy完成签到 ,获得积分10
9秒前
田様应助dengy采纳,获得10
9秒前
王金金发布了新的文献求助10
10秒前
欣喜柚子完成签到 ,获得积分10
10秒前
10秒前
123321完成签到 ,获得积分10
11秒前
11秒前
zyb完成签到 ,获得积分10
11秒前
14秒前
14秒前
顾矜应助suji采纳,获得10
15秒前
exbkb完成签到,获得积分20
15秒前
日月完成签到 ,获得积分10
15秒前
16秒前
16秒前
思源应助大意的饼干采纳,获得10
16秒前
Miorrrrrrr完成签到,获得积分10
17秒前
exbkb发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
18秒前
丘比特应助wangwang采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469034
求助须知:如何正确求助?哪些是违规求助? 4572251
关于积分的说明 14334549
捐赠科研通 4499069
什么是DOI,文献DOI怎么找? 2464895
邀请新用户注册赠送积分活动 1453435
关于科研通互助平台的介绍 1427961