Data-Driven Intelligent Feeding System for Pet Care

计算机科学
作者
Ghimire Ravi,Jae Weon Choi
标识
DOI:10.23919/iccas55662.2022.10003775
摘要

The rapid development of artificial intelligence, the internet of things, and digital information processing technology has a huge impact on our daily lives with smart devices and wearables. The well-being of companion animals such as dogs and cats has become a large challenge. An increasing number of pet owners, their emotional attachment with their pets, and the 21st-century's lifestyle importantly need the safety and welfare of pets by harnessing a smart technological approach. This paper analyzes and compares different machine learning algorithms for data-driven intelligent feeding system for pet care application. Different parameters such as body weight growth, body temperature, heart rate, eating habits, activity, sleep, and urine pH have been considered with other correlated sub-variables in creating virtual datasets. The supervised machine learning models: linear regression, gaussian process regression, narrow neural network, linear support vector machine, and fine tree are evaluated and discussed for estimating feed quantity. The machine learning model was verified by training, validation, and testing datasets. The developed model will be an innovative breakthrough for pet care applications. Feed estimation can be automated using the pet's health parameters, this will help the pet to prevent obesity and related disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
李怼怼完成签到,获得积分10
刚刚
wcwzcz发布了新的文献求助60
1秒前
SciGPT应助LIU采纳,获得10
2秒前
leei完成签到,获得积分10
2秒前
2秒前
SRQ发布了新的文献求助10
2秒前
畅快芝麻完成签到,获得积分10
2秒前
SciGPT应助www采纳,获得10
2秒前
wanci应助XHH1994采纳,获得10
3秒前
小马过河发布了新的文献求助10
4秒前
杨点点完成签到,获得积分20
4秒前
ShangRS发布了新的文献求助10
5秒前
rtx00发布了新的文献求助10
5秒前
赵帅发布了新的文献求助10
5秒前
6秒前
简单花花发布了新的文献求助10
6秒前
6秒前
jiyuan完成签到,获得积分10
7秒前
姜懿完成签到,获得积分10
7秒前
pluto应助SRQ采纳,获得10
8秒前
huoyan2006应助SRQ采纳,获得10
8秒前
李爱国应助SRQ采纳,获得10
8秒前
俏皮连虎完成签到,获得积分10
8秒前
9秒前
lewu完成签到,获得积分10
9秒前
JuNNx不搞科研完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
赫赫完成签到,获得积分10
10秒前
10秒前
aa完成签到,获得积分10
10秒前
11秒前
朱心怡发布了新的文献求助10
11秒前
双洁发布了新的文献求助10
11秒前
狗焕完成签到,获得积分10
12秒前
milagu发布了新的文献求助30
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970062
求助须知:如何正确求助?哪些是违规求助? 3514782
关于积分的说明 11175968
捐赠科研通 3250119
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804951