Data-Driven Intelligent Feeding System for Pet Care

计算机科学
作者
Ghimire Ravi,Jae Weon Choi
标识
DOI:10.23919/iccas55662.2022.10003775
摘要

The rapid development of artificial intelligence, the internet of things, and digital information processing technology has a huge impact on our daily lives with smart devices and wearables. The well-being of companion animals such as dogs and cats has become a large challenge. An increasing number of pet owners, their emotional attachment with their pets, and the 21st-century's lifestyle importantly need the safety and welfare of pets by harnessing a smart technological approach. This paper analyzes and compares different machine learning algorithms for data-driven intelligent feeding system for pet care application. Different parameters such as body weight growth, body temperature, heart rate, eating habits, activity, sleep, and urine pH have been considered with other correlated sub-variables in creating virtual datasets. The supervised machine learning models: linear regression, gaussian process regression, narrow neural network, linear support vector machine, and fine tree are evaluated and discussed for estimating feed quantity. The machine learning model was verified by training, validation, and testing datasets. The developed model will be an innovative breakthrough for pet care applications. Feed estimation can be automated using the pet's health parameters, this will help the pet to prevent obesity and related disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ECCE713完成签到,获得积分10
刚刚
小刺完成签到,获得积分10
刚刚
sweetbearm应助zxl采纳,获得10
刚刚
优秀的盼夏完成签到,获得积分10
1秒前
传奇3应助沉敛一生采纳,获得10
1秒前
科研通AI5应助咕噜仔采纳,获得50
1秒前
lm完成签到,获得积分20
1秒前
FFF发布了新的文献求助10
2秒前
小二郎应助哈哈采纳,获得10
2秒前
乐乐应助juan采纳,获得10
3秒前
txyouniverse完成签到 ,获得积分10
3秒前
CodeCraft应助纷花雨采纳,获得10
3秒前
小十二完成签到,获得积分10
3秒前
Tianxu Li发布了新的文献求助10
4秒前
月白完成签到,获得积分10
4秒前
淡淡de橙子完成签到,获得积分10
5秒前
含蓄哈密瓜完成签到,获得积分20
5秒前
6秒前
小蘑菇应助白华苍松采纳,获得10
6秒前
董咚咚完成签到,获得积分10
8秒前
洋芋片完成签到 ,获得积分10
8秒前
二尖瓣后叶完成签到,获得积分10
9秒前
zc完成签到,获得积分10
9秒前
酷波er应助dildil采纳,获得10
9秒前
科研通AI5应助科研小民工采纳,获得10
10秒前
觅桃乌龙发布了新的文献求助10
10秒前
张有志完成签到,获得积分10
10秒前
JoyceeZHONG完成签到,获得积分10
10秒前
Shine完成签到 ,获得积分10
10秒前
11秒前
King16发布了新的文献求助10
12秒前
哲000完成签到,获得积分10
12秒前
Tutusamo发布了新的文献求助10
12秒前
Ning完成签到,获得积分10
13秒前
科研通AI5应助欢欢采纳,获得10
13秒前
xiaozou55完成签到 ,获得积分10
13秒前
14秒前
浩浩浩完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759