已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data-Driven Intelligent Feeding System for Pet Care

计算机科学
作者
Ghimire Ravi,Jae Weon Choi
标识
DOI:10.23919/iccas55662.2022.10003775
摘要

The rapid development of artificial intelligence, the internet of things, and digital information processing technology has a huge impact on our daily lives with smart devices and wearables. The well-being of companion animals such as dogs and cats has become a large challenge. An increasing number of pet owners, their emotional attachment with their pets, and the 21st-century's lifestyle importantly need the safety and welfare of pets by harnessing a smart technological approach. This paper analyzes and compares different machine learning algorithms for data-driven intelligent feeding system for pet care application. Different parameters such as body weight growth, body temperature, heart rate, eating habits, activity, sleep, and urine pH have been considered with other correlated sub-variables in creating virtual datasets. The supervised machine learning models: linear regression, gaussian process regression, narrow neural network, linear support vector machine, and fine tree are evaluated and discussed for estimating feed quantity. The machine learning model was verified by training, validation, and testing datasets. The developed model will be an innovative breakthrough for pet care applications. Feed estimation can be automated using the pet's health parameters, this will help the pet to prevent obesity and related disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深渊与海完成签到,获得积分10
刚刚
酷波er应助xiaomaxia采纳,获得10
刚刚
B站萧亚轩发布了新的文献求助10
1秒前
学术甜菜发布了新的文献求助10
2秒前
iris发布了新的文献求助10
2秒前
kid1912应助1234采纳,获得10
3秒前
4秒前
烟花应助深渊与海采纳,获得10
5秒前
FashionBoy应助科研狗采纳,获得10
6秒前
7秒前
8秒前
bkagyin应助激动的醉香采纳,获得10
11秒前
12秒前
领导范儿应助优美的SCI采纳,获得10
12秒前
B站萧亚轩发布了新的文献求助30
13秒前
16秒前
lumos完成签到 ,获得积分10
17秒前
17秒前
18秒前
juejue333完成签到,获得积分10
19秒前
20秒前
科研通AI5应助Leo采纳,获得10
20秒前
lilili应助FG采纳,获得10
20秒前
榛子完成签到,获得积分10
20秒前
21秒前
21秒前
suini123发布了新的文献求助10
21秒前
monster完成签到 ,获得积分10
22秒前
23秒前
Finen发布了新的文献求助10
23秒前
iris完成签到,获得积分10
24秒前
25秒前
马马发布了新的文献求助10
26秒前
传奇3应助小白采纳,获得10
28秒前
28秒前
Finen完成签到,获得积分10
30秒前
30秒前
香蕉觅云应助suini123采纳,获得10
31秒前
英姑应助kane浅采纳,获得10
31秒前
科研通AI5应助lilili采纳,获得30
31秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5146933
求助须知:如何正确求助?哪些是违规求助? 4343693
关于积分的说明 13527741
捐赠科研通 4185038
什么是DOI,文献DOI怎么找? 2294991
邀请新用户注册赠送积分活动 1295390
关于科研通互助平台的介绍 1238586