Long-term recordings from area V4 neurons and an accurately-predicting deep convolutional energy model reveal spatial, chromatic and temporal tuning properties under naturalistic conditions

计算机科学 色阶 人工智能 生物系统 模式识别(心理学) 物理 光学 生物
作者
Michele Winter,Tom Dupré la Tour,Michael Eickenberg,Michael Henry Oliver,Jack L. Gallant
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:22 (14): 4363-4363
标识
DOI:10.1167/jov.22.14.4363
摘要

Area V4 is an intermediate processing stage of the ventral visual stream. V4 neurons are selective for color and for shape features of intermediate complexity (e.g., curved edge elements and non-Cartesian gratings). However, current computational models of V4 neurons cannot predict more than a small fraction of the response variance observed under naturalistic conditions. To overcome this limitation we performed long-term, large-scale neurophysiological recordings of V4 neurons during stimulation with full-color nature videos. This produced a data set of unprecedented size, consisting of up to 7 hours of 60Hz video data recorded from single V4 neurons. We then developed a biologically plausible deep convolutional energy model and fit the model separately to each of the V4 neurons in the sample. We found that the fit models achieved high prediction performance on a withheld test set. Each model was used to synthesize a predicted optimal pattern (POP) video, which is predicted to elicit the maximal response of the corresponding neuron. These POPs were then analyzed to recover the spatial, chromatic and temporal tuning properties of the V4 population. The POPs recapitulate previous findings from V4 and also reveal new V4 tuning properties. For example, in the spatial domain V4 neurons differ in their tuning for low versus high frequencies, radial versus concentric gratings, texture versus contour, and contour curvature. In the color domain V4 neurons differ in their selectivity for monochromatic versus color patterns, and for blue-yellow, green-magenta and red-cyan patterns. Finally, in the time domain V4 neurons vary from fast phasic (peak 33-50 ms from stimulus onset), slow phasic (peak 67-83 ms from stimulus onset), and sustained patterns. In sum, the deep convolutional energy model accurately predicts V4 responses under naturalistic conditions and it provides a means to more fully understand and interpret the role of V4 in perception.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYJ完成签到,获得积分10
1秒前
ml完成签到 ,获得积分10
1秒前
罗是一完成签到,获得积分10
1秒前
爱吃泡芙完成签到,获得积分10
1秒前
1秒前
mirror完成签到,获得积分10
1秒前
zhs完成签到,获得积分10
2秒前
2秒前
2秒前
啦啦啦完成签到,获得积分10
3秒前
momo应助michael采纳,获得10
3秒前
3秒前
高高诗柳完成签到 ,获得积分10
3秒前
3秒前
Roger完成签到,获得积分10
3秒前
稳重蜗牛完成签到,获得积分10
3秒前
金岁岁完成签到 ,获得积分10
3秒前
大团长发布了新的文献求助10
4秒前
4秒前
4秒前
Echo发布了新的文献求助10
4秒前
谦让寄容完成签到,获得积分10
4秒前
4秒前
fan完成签到,获得积分10
5秒前
5秒前
max发布了新的文献求助10
6秒前
碧蓝天晴发布了新的文献求助10
6秒前
Roger发布了新的文献求助10
6秒前
juhcy发布了新的文献求助10
6秒前
7秒前
xiaoyu完成签到,获得积分10
7秒前
焰色天雷完成签到,获得积分20
7秒前
文静的摩托完成签到,获得积分10
7秒前
友好的小萱完成签到 ,获得积分10
7秒前
8秒前
gyyy完成签到,获得积分10
8秒前
辐睿完成签到,获得积分10
8秒前
长颈鹿发布了新的文献求助10
8秒前
8秒前
sss完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006