Long-term recordings from area V4 neurons and an accurately-predicting deep convolutional energy model reveal spatial, chromatic and temporal tuning properties under naturalistic conditions

计算机科学 色阶 人工智能 生物系统 模式识别(心理学) 物理 光学 生物
作者
Michele Winter,Tom Dupré la Tour,Michael Eickenberg,Michael Henry Oliver,Jack L. Gallant
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology]
卷期号:22 (14): 4363-4363
标识
DOI:10.1167/jov.22.14.4363
摘要

Area V4 is an intermediate processing stage of the ventral visual stream. V4 neurons are selective for color and for shape features of intermediate complexity (e.g., curved edge elements and non-Cartesian gratings). However, current computational models of V4 neurons cannot predict more than a small fraction of the response variance observed under naturalistic conditions. To overcome this limitation we performed long-term, large-scale neurophysiological recordings of V4 neurons during stimulation with full-color nature videos. This produced a data set of unprecedented size, consisting of up to 7 hours of 60Hz video data recorded from single V4 neurons. We then developed a biologically plausible deep convolutional energy model and fit the model separately to each of the V4 neurons in the sample. We found that the fit models achieved high prediction performance on a withheld test set. Each model was used to synthesize a predicted optimal pattern (POP) video, which is predicted to elicit the maximal response of the corresponding neuron. These POPs were then analyzed to recover the spatial, chromatic and temporal tuning properties of the V4 population. The POPs recapitulate previous findings from V4 and also reveal new V4 tuning properties. For example, in the spatial domain V4 neurons differ in their tuning for low versus high frequencies, radial versus concentric gratings, texture versus contour, and contour curvature. In the color domain V4 neurons differ in their selectivity for monochromatic versus color patterns, and for blue-yellow, green-magenta and red-cyan patterns. Finally, in the time domain V4 neurons vary from fast phasic (peak 33-50 ms from stimulus onset), slow phasic (peak 67-83 ms from stimulus onset), and sustained patterns. In sum, the deep convolutional energy model accurately predicts V4 responses under naturalistic conditions and it provides a means to more fully understand and interpret the role of V4 in perception.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助飘零枫叶采纳,获得10
刚刚
1秒前
花笙米完成签到,获得积分10
2秒前
清新的小凝完成签到 ,获得积分10
3秒前
充电宝应助乐1采纳,获得10
3秒前
晶镓万岁发布了新的文献求助10
3秒前
yukuai发布了新的文献求助10
3秒前
pppyrus发布了新的文献求助10
3秒前
西尔维完成签到,获得积分10
3秒前
5秒前
5秒前
栩栩发布了新的文献求助10
5秒前
HX完成签到,获得积分10
6秒前
6秒前
6秒前
义气雁完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
sota发布了新的文献求助10
8秒前
8秒前
糕米完成签到,获得积分10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
科研助手6应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
怎么说应助科研通管家采纳,获得10
10秒前
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
情怀应助清新的Q采纳,获得10
10秒前
天天快乐应助量子星尘采纳,获得30
10秒前
共享精神应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
Sw完成签到,获得积分10
11秒前
怎么说应助科研通管家采纳,获得10
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344