Long-term recordings from area V4 neurons and an accurately-predicting deep convolutional energy model reveal spatial, chromatic and temporal tuning properties under naturalistic conditions

计算机科学 色阶 人工智能 生物系统 模式识别(心理学) 物理 光学 生物
作者
Michele Winter,Tom Dupré la Tour,Michael Eickenberg,Michael Henry Oliver,Jack L. Gallant
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:22 (14): 4363-4363
标识
DOI:10.1167/jov.22.14.4363
摘要

Area V4 is an intermediate processing stage of the ventral visual stream. V4 neurons are selective for color and for shape features of intermediate complexity (e.g., curved edge elements and non-Cartesian gratings). However, current computational models of V4 neurons cannot predict more than a small fraction of the response variance observed under naturalistic conditions. To overcome this limitation we performed long-term, large-scale neurophysiological recordings of V4 neurons during stimulation with full-color nature videos. This produced a data set of unprecedented size, consisting of up to 7 hours of 60Hz video data recorded from single V4 neurons. We then developed a biologically plausible deep convolutional energy model and fit the model separately to each of the V4 neurons in the sample. We found that the fit models achieved high prediction performance on a withheld test set. Each model was used to synthesize a predicted optimal pattern (POP) video, which is predicted to elicit the maximal response of the corresponding neuron. These POPs were then analyzed to recover the spatial, chromatic and temporal tuning properties of the V4 population. The POPs recapitulate previous findings from V4 and also reveal new V4 tuning properties. For example, in the spatial domain V4 neurons differ in their tuning for low versus high frequencies, radial versus concentric gratings, texture versus contour, and contour curvature. In the color domain V4 neurons differ in their selectivity for monochromatic versus color patterns, and for blue-yellow, green-magenta and red-cyan patterns. Finally, in the time domain V4 neurons vary from fast phasic (peak 33-50 ms from stimulus onset), slow phasic (peak 67-83 ms from stimulus onset), and sustained patterns. In sum, the deep convolutional energy model accurately predicts V4 responses under naturalistic conditions and it provides a means to more fully understand and interpret the role of V4 in perception.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
呱呱呱发布了新的文献求助10
2秒前
板栗蘑菇发布了新的文献求助10
4秒前
kkk发布了新的文献求助10
5秒前
qi发布了新的文献求助20
5秒前
xixixi完成签到,获得积分20
8秒前
Ying完成签到,获得积分10
9秒前
阔达的柠檬完成签到,获得积分10
10秒前
栗子完成签到,获得积分10
11秒前
11秒前
犹豫大侠完成签到,获得积分10
13秒前
Ying发布了新的文献求助10
13秒前
ll应助dddd采纳,获得10
13秒前
16秒前
cr4zy411发布了新的文献求助10
16秒前
脑洞疼应助缥缈耷采纳,获得10
19秒前
20秒前
20秒前
阿冰发布了新的文献求助10
21秒前
liuda完成签到,获得积分10
21秒前
周小洁关注了科研通微信公众号
24秒前
Peppermint完成签到,获得积分10
24秒前
25秒前
子车茗应助阿冰采纳,获得10
28秒前
28秒前
qi完成签到,获得积分20
28秒前
bbll完成签到,获得积分10
31秒前
板栗蘑菇完成签到,获得积分10
32秒前
发嗲的怜珊完成签到,获得积分10
33秒前
嘚嘚发布了新的文献求助10
33秒前
瓜瓜程关注了科研通微信公众号
33秒前
susu完成签到,获得积分10
35秒前
ocean完成签到,获得积分10
35秒前
36秒前
NexusExplorer应助爱科研采纳,获得30
36秒前
37秒前
38秒前
黎耀辉完成签到 ,获得积分10
38秒前
整齐强炫完成签到,获得积分10
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316416
求助须知:如何正确求助?哪些是违规求助? 2948109
关于积分的说明 8539240
捐赠科研通 2624069
什么是DOI,文献DOI怎么找? 1435722
科研通“疑难数据库(出版商)”最低求助积分说明 665672
邀请新用户注册赠送积分活动 651532