亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Long-term recordings from area V4 neurons and an accurately-predicting deep convolutional energy model reveal spatial, chromatic and temporal tuning properties under naturalistic conditions

计算机科学 色阶 人工智能 生物系统 模式识别(心理学) 物理 光学 生物
作者
Michele Winter,Tom Dupré la Tour,Michael Eickenberg,Michael Henry Oliver,Jack L. Gallant
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology]
卷期号:22 (14): 4363-4363
标识
DOI:10.1167/jov.22.14.4363
摘要

Area V4 is an intermediate processing stage of the ventral visual stream. V4 neurons are selective for color and for shape features of intermediate complexity (e.g., curved edge elements and non-Cartesian gratings). However, current computational models of V4 neurons cannot predict more than a small fraction of the response variance observed under naturalistic conditions. To overcome this limitation we performed long-term, large-scale neurophysiological recordings of V4 neurons during stimulation with full-color nature videos. This produced a data set of unprecedented size, consisting of up to 7 hours of 60Hz video data recorded from single V4 neurons. We then developed a biologically plausible deep convolutional energy model and fit the model separately to each of the V4 neurons in the sample. We found that the fit models achieved high prediction performance on a withheld test set. Each model was used to synthesize a predicted optimal pattern (POP) video, which is predicted to elicit the maximal response of the corresponding neuron. These POPs were then analyzed to recover the spatial, chromatic and temporal tuning properties of the V4 population. The POPs recapitulate previous findings from V4 and also reveal new V4 tuning properties. For example, in the spatial domain V4 neurons differ in their tuning for low versus high frequencies, radial versus concentric gratings, texture versus contour, and contour curvature. In the color domain V4 neurons differ in their selectivity for monochromatic versus color patterns, and for blue-yellow, green-magenta and red-cyan patterns. Finally, in the time domain V4 neurons vary from fast phasic (peak 33-50 ms from stimulus onset), slow phasic (peak 67-83 ms from stimulus onset), and sustained patterns. In sum, the deep convolutional energy model accurately predicts V4 responses under naturalistic conditions and it provides a means to more fully understand and interpret the role of V4 in perception.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助喜滋滋采纳,获得10
25秒前
璨澄完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
1分钟前
喜滋滋发布了新的文献求助10
1分钟前
1分钟前
DrN发布了新的文献求助10
1分钟前
淡定成风完成签到,获得积分10
1分钟前
隐形曼青应助喜滋滋采纳,获得10
1分钟前
结实智宸完成签到,获得积分10
1分钟前
科研通AI5应助tzy采纳,获得10
2分钟前
2分钟前
tzy发布了新的文献求助10
2分钟前
tzy完成签到,获得积分10
2分钟前
wjx完成签到 ,获得积分10
3分钟前
幽默赛君完成签到 ,获得积分10
3分钟前
阔达棉花糖完成签到 ,获得积分10
3分钟前
顺利豆豆完成签到,获得积分10
3分钟前
zxcvvbb1001完成签到 ,获得积分10
3分钟前
3分钟前
5分钟前
5分钟前
喜滋滋发布了新的文献求助10
5分钟前
Elena发布了新的文献求助10
5分钟前
Ocean完成签到,获得积分10
5分钟前
酷波er应助科研通管家采纳,获得10
5分钟前
丘比特应助Elena采纳,获得10
5分钟前
科研通AI2S应助Raye采纳,获得10
5分钟前
李剑鸿发布了新的文献求助200
5分钟前
5分钟前
顺利豆豆发布了新的文献求助10
5分钟前
Raye发布了新的文献求助10
5分钟前
Elena完成签到,获得积分10
5分钟前
5分钟前
黄玉发布了新的文献求助10
5分钟前
Tayzon完成签到 ,获得积分10
5分钟前
个性画笔发布了新的文献求助60
6分钟前
nickel完成签到,获得积分10
6分钟前
Hello应助黄玉采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4869970
求助须知:如何正确求助?哪些是违规求助? 4160714
关于积分的说明 12902077
捐赠科研通 3915760
什么是DOI,文献DOI怎么找? 2150488
邀请新用户注册赠送积分活动 1168870
关于科研通互助平台的介绍 1071972