亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Long-term recordings from area V4 neurons and an accurately-predicting deep convolutional energy model reveal spatial, chromatic and temporal tuning properties under naturalistic conditions

计算机科学 色阶 人工智能 生物系统 模式识别(心理学) 物理 光学 生物
作者
Michele Winter,Tom Dupré la Tour,Michael Eickenberg,Michael Henry Oliver,Jack L. Gallant
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:22 (14): 4363-4363
标识
DOI:10.1167/jov.22.14.4363
摘要

Area V4 is an intermediate processing stage of the ventral visual stream. V4 neurons are selective for color and for shape features of intermediate complexity (e.g., curved edge elements and non-Cartesian gratings). However, current computational models of V4 neurons cannot predict more than a small fraction of the response variance observed under naturalistic conditions. To overcome this limitation we performed long-term, large-scale neurophysiological recordings of V4 neurons during stimulation with full-color nature videos. This produced a data set of unprecedented size, consisting of up to 7 hours of 60Hz video data recorded from single V4 neurons. We then developed a biologically plausible deep convolutional energy model and fit the model separately to each of the V4 neurons in the sample. We found that the fit models achieved high prediction performance on a withheld test set. Each model was used to synthesize a predicted optimal pattern (POP) video, which is predicted to elicit the maximal response of the corresponding neuron. These POPs were then analyzed to recover the spatial, chromatic and temporal tuning properties of the V4 population. The POPs recapitulate previous findings from V4 and also reveal new V4 tuning properties. For example, in the spatial domain V4 neurons differ in their tuning for low versus high frequencies, radial versus concentric gratings, texture versus contour, and contour curvature. In the color domain V4 neurons differ in their selectivity for monochromatic versus color patterns, and for blue-yellow, green-magenta and red-cyan patterns. Finally, in the time domain V4 neurons vary from fast phasic (peak 33-50 ms from stimulus onset), slow phasic (peak 67-83 ms from stimulus onset), and sustained patterns. In sum, the deep convolutional energy model accurately predicts V4 responses under naturalistic conditions and it provides a means to more fully understand and interpret the role of V4 in perception.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
DD完成签到 ,获得积分10
2秒前
8秒前
11秒前
我是老大应助李桂芳采纳,获得10
12秒前
浮浮世世应助科研通管家采纳,获得30
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得20
14秒前
浮游应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
15秒前
压缩完成签到 ,获得积分10
22秒前
22秒前
23秒前
李健的小迷弟应助豆都采纳,获得10
23秒前
25秒前
37秒前
小张完成签到 ,获得积分10
40秒前
44秒前
51秒前
啵啵完成签到 ,获得积分10
52秒前
大胆的碧菡完成签到,获得积分10
52秒前
青柠完成签到,获得积分10
54秒前
56秒前
青柠发布了新的文献求助10
57秒前
Shang完成签到 ,获得积分10
59秒前
炙热的渊思完成签到,获得积分10
1分钟前
平淡如天完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Hello应助剧院的饭桶采纳,获得30
1分钟前
顏泰楊完成签到,获得积分10
1分钟前
1分钟前
1分钟前
11122发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490