PPI-Miner: A Structure and Sequence Motif Co-Driven Protein–Protein Interaction Mining and Modeling Computational Method

计算生物学 计算机科学 主题(音乐) 序列母题 结构母题 数据挖掘 生物 遗传学 DNA 生物化学 声学 物理
作者
Lin Wang,Fenglei Li,Xinyue Ma,Yong Cang,Fang Bai
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (23): 6160-6171 被引量:16
标识
DOI:10.1021/acs.jcim.2c01033
摘要

Protein-protein interactions (PPIs) play important roles in biological processes of life, and predicting PPIs becomes a critical scientific issue of concern. Most PPIs occur through small domains or motifs (fragments), which are challenging and laborious to map by standard biochemical approaches because they generally require the cloning of several truncation mutants. Here, we present a computational method, named as PPI-Miner, to fish potential protein interacting partners utilizing protein motifs as queries. In brief, this work first developed a motif-matching algorithm designed to identify the proteins that contain sequential or structural similar motifs with the given query motif. Being aligned to the query motif, the binding mode of the discovered motif and its receptor protein will be initially determined to be used to build PPI complexes accordingly. Eventually, a PPI complex structure could be built and optimized with a designed automatic protocol. Besides discovering PPIs, PPI-Miner can also be applied to other areas, i.e., the rational design of molecular glues and protein vaccines. In this work, PPI-Miner was employed to mine the potential cereblon (CRBN) substrates from human proteome. As a result, 1,739 candidates were predicted, and 16 of them have been experimentally validated in previous studies. The source code of PPI-Miner can be obtained from the GitHub repository (https://github.com/Wang-Lin-boop/PPI-Miner), the webserver is freely available for users (https://bailab.siais.shanghaitech.edu.cn/services/ppi-miner), and the database of predicted CRBN substrates is accessible at https://bailab.siais.shanghaitech.edu.cn/services/crbn-subslib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
半只小猪完成签到 ,获得积分20
1秒前
俏皮跳跳糖完成签到,获得积分10
1秒前
康娜完成签到,获得积分10
1秒前
xiaowang发布了新的文献求助10
2秒前
lihe198900完成签到 ,获得积分10
2秒前
香蕉导师发布了新的文献求助10
2秒前
zzmm发布了新的文献求助10
3秒前
36456657应助小喜采纳,获得10
3秒前
爱笑凤凰完成签到,获得积分10
4秒前
4秒前
天气预报完成签到,获得积分10
5秒前
smottom应助热情的戾采纳,获得10
5秒前
ruru完成签到,获得积分10
5秒前
布布完成签到,获得积分10
5秒前
SciGPT应助Han采纳,获得10
5秒前
bkagyin应助二十二采纳,获得10
5秒前
Yu完成签到,获得积分10
5秒前
Elizabeth12138完成签到,获得积分10
6秒前
7秒前
vvA11发布了新的文献求助10
7秒前
脑洞疼应助suye采纳,获得10
7秒前
8秒前
8秒前
航航完成签到,获得积分20
9秒前
小蘑菇应助健忘捕采纳,获得10
9秒前
10秒前
10秒前
要减肥完成签到,获得积分10
10秒前
10秒前
和谐青柏应助popo采纳,获得10
10秒前
11秒前
牛奶糖完成签到,获得积分10
11秒前
悠悠发布了新的文献求助10
11秒前
Jasper应助Yu采纳,获得100
11秒前
11秒前
乐乐应助善良的血茗采纳,获得10
11秒前
niobelynn发布了新的文献求助10
12秒前
12秒前
极夜完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624445
求助须知:如何正确求助?哪些是违规求助? 4710318
关于积分的说明 14950073
捐赠科研通 4778363
什么是DOI,文献DOI怎么找? 2553244
邀请新用户注册赠送积分活动 1515179
关于科研通互助平台的介绍 1475520