PPI-Miner: A Structure and Sequence Motif Co-Driven Protein–Protein Interaction Mining and Modeling Computational Method

计算生物学 计算机科学 主题(音乐) 序列母题 结构母题 数据挖掘 生物 遗传学 DNA 生物化学 声学 物理
作者
Lin Wang,Fenglei Li,Xinyue Ma,Yong Cang,Fang Bai
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (23): 6160-6171 被引量:16
标识
DOI:10.1021/acs.jcim.2c01033
摘要

Protein-protein interactions (PPIs) play important roles in biological processes of life, and predicting PPIs becomes a critical scientific issue of concern. Most PPIs occur through small domains or motifs (fragments), which are challenging and laborious to map by standard biochemical approaches because they generally require the cloning of several truncation mutants. Here, we present a computational method, named as PPI-Miner, to fish potential protein interacting partners utilizing protein motifs as queries. In brief, this work first developed a motif-matching algorithm designed to identify the proteins that contain sequential or structural similar motifs with the given query motif. Being aligned to the query motif, the binding mode of the discovered motif and its receptor protein will be initially determined to be used to build PPI complexes accordingly. Eventually, a PPI complex structure could be built and optimized with a designed automatic protocol. Besides discovering PPIs, PPI-Miner can also be applied to other areas, i.e., the rational design of molecular glues and protein vaccines. In this work, PPI-Miner was employed to mine the potential cereblon (CRBN) substrates from human proteome. As a result, 1,739 candidates were predicted, and 16 of them have been experimentally validated in previous studies. The source code of PPI-Miner can be obtained from the GitHub repository (https://github.com/Wang-Lin-boop/PPI-Miner), the webserver is freely available for users (https://bailab.siais.shanghaitech.edu.cn/services/ppi-miner), and the database of predicted CRBN substrates is accessible at https://bailab.siais.shanghaitech.edu.cn/services/crbn-subslib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助小盆呐采纳,获得10
刚刚
1秒前
1秒前
哈哈哈发布了新的文献求助10
1秒前
lulu发布了新的文献求助10
1秒前
9391发布了新的文献求助10
1秒前
lucy完成签到 ,获得积分10
2秒前
2秒前
专注的枫叶完成签到,获得积分10
2秒前
胡平发布了新的文献求助10
2秒前
xmyang发布了新的文献求助10
3秒前
3秒前
3秒前
感动水杯发布了新的文献求助10
3秒前
yuki完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
Emidn1应助莫离采纳,获得10
4秒前
科研通AI6应助ss采纳,获得10
4秒前
流砂完成签到,获得积分10
5秒前
Xenia完成签到,获得积分10
5秒前
哲别发布了新的文献求助10
5秒前
77完成签到,获得积分20
5秒前
5秒前
Jared应助威武的绿兰采纳,获得10
6秒前
范同学完成签到,获得积分10
6秒前
6秒前
typ完成签到,获得积分10
7秒前
sunshine999发布了新的文献求助10
7秒前
7秒前
轩子发布了新的文献求助10
8秒前
Jason发布了新的文献求助20
8秒前
大方问柳发布了新的文献求助30
8秒前
小丑完成签到 ,获得积分10
8秒前
8秒前
8秒前
AJY完成签到,获得积分10
8秒前
顾矜应助vv采纳,获得10
8秒前
科研通AI2S应助ti采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049