已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PPI-Miner: A Structure and Sequence Motif Co-Driven Protein–Protein Interaction Mining and Modeling Computational Method

计算生物学 计算机科学 主题(音乐) 序列母题 结构母题 数据挖掘 生物 遗传学 DNA 生物化学 声学 物理
作者
Lin Wang,Fenglei Li,Xinyue Ma,Yong Cang,Fang Bai
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (23): 6160-6171 被引量:10
标识
DOI:10.1021/acs.jcim.2c01033
摘要

Protein-protein interactions (PPIs) play important roles in biological processes of life, and predicting PPIs becomes a critical scientific issue of concern. Most PPIs occur through small domains or motifs (fragments), which are challenging and laborious to map by standard biochemical approaches because they generally require the cloning of several truncation mutants. Here, we present a computational method, named as PPI-Miner, to fish potential protein interacting partners utilizing protein motifs as queries. In brief, this work first developed a motif-matching algorithm designed to identify the proteins that contain sequential or structural similar motifs with the given query motif. Being aligned to the query motif, the binding mode of the discovered motif and its receptor protein will be initially determined to be used to build PPI complexes accordingly. Eventually, a PPI complex structure could be built and optimized with a designed automatic protocol. Besides discovering PPIs, PPI-Miner can also be applied to other areas, i.e., the rational design of molecular glues and protein vaccines. In this work, PPI-Miner was employed to mine the potential cereblon (CRBN) substrates from human proteome. As a result, 1,739 candidates were predicted, and 16 of them have been experimentally validated in previous studies. The source code of PPI-Miner can be obtained from the GitHub repository (https://github.com/Wang-Lin-boop/PPI-Miner), the webserver is freely available for users (https://bailab.siais.shanghaitech.edu.cn/services/ppi-miner), and the database of predicted CRBN substrates is accessible at https://bailab.siais.shanghaitech.edu.cn/services/crbn-subslib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助小赵采纳,获得10
1秒前
laifu完成签到,获得积分10
2秒前
Fushuai完成签到,获得积分10
2秒前
3秒前
Young完成签到,获得积分10
4秒前
浮游应助迷你的蜜蜂采纳,获得10
4秒前
爆米花应助222采纳,获得10
5秒前
6秒前
慕青应助无聊的太清采纳,获得10
6秒前
冬藏完成签到,获得积分10
7秒前
7秒前
7秒前
简意发布了新的文献求助10
8秒前
8秒前
小蘑菇应助虚心的晟睿采纳,获得10
10秒前
曾阿牛发布了新的文献求助10
12秒前
12秒前
Jasper应助冬藏采纳,获得10
12秒前
刘莹发布了新的文献求助10
12秒前
枕边人完成签到 ,获得积分10
13秒前
孤独白拍完成签到 ,获得积分10
13秒前
木鸽子发布了新的文献求助10
14秒前
Orange应助Willow采纳,获得10
15秒前
16秒前
祝你开心发布了新的文献求助10
17秒前
18秒前
华仔应助月儿采纳,获得10
18秒前
18秒前
北辰发布了新的文献求助10
20秒前
22秒前
CipherSage应助呼呼夫人采纳,获得30
23秒前
23秒前
科研通AI6应助呼呼夫人采纳,获得10
23秒前
23秒前
让我顺利毕业完成签到,获得积分10
24秒前
24秒前
_ban发布了新的文献求助30
24秒前
小马甲应助重要的奇异果采纳,获得10
25秒前
Adrenaline完成签到,获得积分10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943622
求助须知:如何正确求助?哪些是违规求助? 4208867
关于积分的说明 13084003
捐赠科研通 3988265
什么是DOI,文献DOI怎么找? 2183512
邀请新用户注册赠送积分活动 1199058
关于科研通互助平台的介绍 1111699