PPI-Miner: A Structure and Sequence Motif Co-Driven Protein–Protein Interaction Mining and Modeling Computational Method

计算生物学 计算机科学 主题(音乐) 序列母题 结构母题 数据挖掘 生物 遗传学 DNA 生物化学 声学 物理
作者
Lin Wang,Fenglei Li,Xinyue Ma,Yong Cang,Fang Bai
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (23): 6160-6171 被引量:2
标识
DOI:10.1021/acs.jcim.2c01033
摘要

Protein-protein interactions (PPIs) play important roles in biological processes of life, and predicting PPIs becomes a critical scientific issue of concern. Most PPIs occur through small domains or motifs (fragments), which are challenging and laborious to map by standard biochemical approaches because they generally require the cloning of several truncation mutants. Here, we present a computational method, named as PPI-Miner, to fish potential protein interacting partners utilizing protein motifs as queries. In brief, this work first developed a motif-matching algorithm designed to identify the proteins that contain sequential or structural similar motifs with the given query motif. Being aligned to the query motif, the binding mode of the discovered motif and its receptor protein will be initially determined to be used to build PPI complexes accordingly. Eventually, a PPI complex structure could be built and optimized with a designed automatic protocol. Besides discovering PPIs, PPI-Miner can also be applied to other areas, i.e., the rational design of molecular glues and protein vaccines. In this work, PPI-Miner was employed to mine the potential cereblon (CRBN) substrates from human proteome. As a result, 1,739 candidates were predicted, and 16 of them have been experimentally validated in previous studies. The source code of PPI-Miner can be obtained from the GitHub repository (https://github.com/Wang-Lin-boop/PPI-Miner), the webserver is freely available for users (https://bailab.siais.shanghaitech.edu.cn/services/ppi-miner), and the database of predicted CRBN substrates is accessible at https://bailab.siais.shanghaitech.edu.cn/services/crbn-subslib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助10
刚刚
CodeCraft应助Singularity采纳,获得10
刚刚
limbo发布了新的文献求助10
刚刚
RUI完成签到 ,获得积分10
1秒前
decade发布了新的文献求助10
1秒前
1秒前
研友_LX02xL发布了新的文献求助10
2秒前
3秒前
诗和远方的,完成签到,获得积分10
3秒前
刘星宇发布了新的文献求助10
6秒前
6秒前
研友_VZG7GZ应助17采纳,获得10
7秒前
谦让夜香发布了新的文献求助10
7秒前
Zhao完成签到,获得积分20
8秒前
8秒前
欠虐宝宝发布了新的文献求助10
8秒前
妙狸发布了新的文献求助10
9秒前
好烦呀发布了新的文献求助10
9秒前
10秒前
LULU完成签到,获得积分10
10秒前
自然秋柳发布了新的文献求助10
13秒前
100完成签到,获得积分10
14秒前
Dudu发布了新的文献求助10
14秒前
科研通AI2S应助二三采纳,获得10
15秒前
hkjing发布了新的文献求助10
19秒前
Akim应助菠菜采纳,获得100
20秒前
华仔应助丰富的小白菜采纳,获得10
21秒前
24秒前
25秒前
科目三应助Dudu采纳,获得30
26秒前
仁爱听露完成签到 ,获得积分10
26秒前
27秒前
30秒前
杨杨完成签到 ,获得积分10
30秒前
YY发布了新的文献求助10
31秒前
xuanyu应助费费采纳,获得30
31秒前
英俊的铭应助淡定小白菜采纳,获得10
31秒前
玉玉发布了新的文献求助10
32秒前
青椒超人关注了科研通微信公众号
32秒前
小殷发布了新的文献求助10
34秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055748
求助须知:如何正确求助?哪些是违规求助? 2712398
关于积分的说明 7431409
捐赠科研通 2357400
什么是DOI,文献DOI怎么找? 1248780
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596163