PPI-Miner: A Structure and Sequence Motif Co-Driven Protein–Protein Interaction Mining and Modeling Computational Method

计算生物学 计算机科学 主题(音乐) 序列母题 结构母题 数据挖掘 生物 遗传学 DNA 生物化学 声学 物理
作者
Lin Wang,Fenglei Li,Xinyue Ma,Yong Cang,Fang Bai
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (23): 6160-6171 被引量:16
标识
DOI:10.1021/acs.jcim.2c01033
摘要

Protein-protein interactions (PPIs) play important roles in biological processes of life, and predicting PPIs becomes a critical scientific issue of concern. Most PPIs occur through small domains or motifs (fragments), which are challenging and laborious to map by standard biochemical approaches because they generally require the cloning of several truncation mutants. Here, we present a computational method, named as PPI-Miner, to fish potential protein interacting partners utilizing protein motifs as queries. In brief, this work first developed a motif-matching algorithm designed to identify the proteins that contain sequential or structural similar motifs with the given query motif. Being aligned to the query motif, the binding mode of the discovered motif and its receptor protein will be initially determined to be used to build PPI complexes accordingly. Eventually, a PPI complex structure could be built and optimized with a designed automatic protocol. Besides discovering PPIs, PPI-Miner can also be applied to other areas, i.e., the rational design of molecular glues and protein vaccines. In this work, PPI-Miner was employed to mine the potential cereblon (CRBN) substrates from human proteome. As a result, 1,739 candidates were predicted, and 16 of them have been experimentally validated in previous studies. The source code of PPI-Miner can be obtained from the GitHub repository (https://github.com/Wang-Lin-boop/PPI-Miner), the webserver is freely available for users (https://bailab.siais.shanghaitech.edu.cn/services/ppi-miner), and the database of predicted CRBN substrates is accessible at https://bailab.siais.shanghaitech.edu.cn/services/crbn-subslib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
necos发布了新的文献求助10
2秒前
2秒前
3秒前
fmx完成签到,获得积分10
3秒前
残剑月发布了新的文献求助10
4秒前
4秒前
weihongjuan发布了新的文献求助10
4秒前
帅气的馒头应助酷炫初雪采纳,获得10
4秒前
janette完成签到,获得积分10
5秒前
爆米花应助乌衣白马采纳,获得10
5秒前
5秒前
财神爷心尖尖的宝儿完成签到,获得积分10
6秒前
zyc发布了新的文献求助10
6秒前
nn完成签到,获得积分20
6秒前
阿屁屁猪完成签到,获得积分10
8秒前
8秒前
TearMarks完成签到 ,获得积分10
8秒前
小白发布了新的文献求助200
8秒前
8秒前
酷波er应助baobaot采纳,获得10
9秒前
勿忘9451发布了新的文献求助10
9秒前
研友_Z6G2D8完成签到,获得积分10
9秒前
可爱的函函应助pjjpk01采纳,获得10
10秒前
贝尔摩德发布了新的文献求助10
11秒前
CR完成签到,获得积分10
12秒前
Liuya发布了新的文献求助10
12秒前
12秒前
科目三应助辛勤面包采纳,获得10
12秒前
Mrlazy发布了新的文献求助10
12秒前
小蘑菇应助马明旋采纳,获得10
12秒前
12秒前
13秒前
13秒前
紫丁香完成签到 ,获得积分10
14秒前
15秒前
15秒前
陈BB发布了新的文献求助20
15秒前
ww完成签到,获得积分10
15秒前
田小班完成签到,获得积分10
15秒前
传奇3应助把握有度采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836