PPI-Miner: A Structure and Sequence Motif Co-Driven Protein–Protein Interaction Mining and Modeling Computational Method

计算生物学 计算机科学 主题(音乐) 序列母题 结构母题 数据挖掘 生物 遗传学 DNA 生物化学 声学 物理
作者
Lin Wang,Fenglei Li,Xinyue Ma,Yong Cang,Fang Bai
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (23): 6160-6171 被引量:2
标识
DOI:10.1021/acs.jcim.2c01033
摘要

Protein-protein interactions (PPIs) play important roles in biological processes of life, and predicting PPIs becomes a critical scientific issue of concern. Most PPIs occur through small domains or motifs (fragments), which are challenging and laborious to map by standard biochemical approaches because they generally require the cloning of several truncation mutants. Here, we present a computational method, named as PPI-Miner, to fish potential protein interacting partners utilizing protein motifs as queries. In brief, this work first developed a motif-matching algorithm designed to identify the proteins that contain sequential or structural similar motifs with the given query motif. Being aligned to the query motif, the binding mode of the discovered motif and its receptor protein will be initially determined to be used to build PPI complexes accordingly. Eventually, a PPI complex structure could be built and optimized with a designed automatic protocol. Besides discovering PPIs, PPI-Miner can also be applied to other areas, i.e., the rational design of molecular glues and protein vaccines. In this work, PPI-Miner was employed to mine the potential cereblon (CRBN) substrates from human proteome. As a result, 1,739 candidates were predicted, and 16 of them have been experimentally validated in previous studies. The source code of PPI-Miner can be obtained from the GitHub repository (https://github.com/Wang-Lin-boop/PPI-Miner), the webserver is freely available for users (https://bailab.siais.shanghaitech.edu.cn/services/ppi-miner), and the database of predicted CRBN substrates is accessible at https://bailab.siais.shanghaitech.edu.cn/services/crbn-subslib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不配.应助活泼又晴采纳,获得20
刚刚
土豆魔王发布了新的文献求助10
刚刚
小李完成签到,获得积分10
1秒前
1秒前
蓝桉完成签到,获得积分10
1秒前
2秒前
Miller应助水合氯醛采纳,获得10
2秒前
wzx完成签到,获得积分10
2秒前
小马甲应助积极的忆曼采纳,获得10
3秒前
情怀应助萧a采纳,获得10
4秒前
4秒前
4秒前
5秒前
田様应助suzy采纳,获得10
5秒前
sandra完成签到 ,获得积分10
6秒前
6秒前
6秒前
顾影完成签到,获得积分10
7秒前
XA完成签到,获得积分10
7秒前
盐海碧完成签到,获得积分10
7秒前
栀璃鸳挽发布了新的文献求助10
8秒前
歇菜完成签到 ,获得积分10
8秒前
卷卷完成签到,获得积分10
8秒前
9秒前
nancy发布了新的文献求助30
9秒前
9秒前
youngx发布了新的文献求助10
10秒前
左丘以云发布了新的文献求助10
10秒前
Astro应助露似珍珠月似弓采纳,获得10
10秒前
11秒前
ding应助newstrong采纳,获得10
11秒前
12秒前
12秒前
完全X从完成签到,获得积分20
13秒前
NSS完成签到,获得积分10
13秒前
13秒前
超帅蛋挞完成签到,获得积分10
13秒前
yao完成签到,获得积分10
13秒前
only完成签到 ,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147464
求助须知:如何正确求助?哪些是违规求助? 2798635
关于积分的说明 7830317
捐赠科研通 2455424
什么是DOI,文献DOI怎么找? 1306789
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587