PPI-Miner: A Structure and Sequence Motif Co-Driven Protein–Protein Interaction Mining and Modeling Computational Method

计算生物学 计算机科学 主题(音乐) 序列母题 结构母题 数据挖掘 生物 遗传学 DNA 生物化学 声学 物理
作者
Lin Wang,Fenglei Li,Xinyue Ma,Yong Cang,Fang Bai
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (23): 6160-6171 被引量:16
标识
DOI:10.1021/acs.jcim.2c01033
摘要

Protein-protein interactions (PPIs) play important roles in biological processes of life, and predicting PPIs becomes a critical scientific issue of concern. Most PPIs occur through small domains or motifs (fragments), which are challenging and laborious to map by standard biochemical approaches because they generally require the cloning of several truncation mutants. Here, we present a computational method, named as PPI-Miner, to fish potential protein interacting partners utilizing protein motifs as queries. In brief, this work first developed a motif-matching algorithm designed to identify the proteins that contain sequential or structural similar motifs with the given query motif. Being aligned to the query motif, the binding mode of the discovered motif and its receptor protein will be initially determined to be used to build PPI complexes accordingly. Eventually, a PPI complex structure could be built and optimized with a designed automatic protocol. Besides discovering PPIs, PPI-Miner can also be applied to other areas, i.e., the rational design of molecular glues and protein vaccines. In this work, PPI-Miner was employed to mine the potential cereblon (CRBN) substrates from human proteome. As a result, 1,739 candidates were predicted, and 16 of them have been experimentally validated in previous studies. The source code of PPI-Miner can be obtained from the GitHub repository (https://github.com/Wang-Lin-boop/PPI-Miner), the webserver is freely available for users (https://bailab.siais.shanghaitech.edu.cn/services/ppi-miner), and the database of predicted CRBN substrates is accessible at https://bailab.siais.shanghaitech.edu.cn/services/crbn-subslib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏天夏天悄悄过去完成签到,获得积分10
刚刚
森距离发布了新的文献求助30
刚刚
马茹发布了新的文献求助10
刚刚
田様应助岁月轮回采纳,获得10
1秒前
tq发布了新的文献求助10
2秒前
2秒前
热爱科研的小康完成签到,获得积分10
4秒前
4秒前
NexusExplorer应助沙拉酱采纳,获得10
4秒前
5秒前
Aprial完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
汉堡包应助xiaomage采纳,获得10
10秒前
小伊001完成签到,获得积分10
11秒前
王图图发布了新的文献求助10
12秒前
12秒前
罗伊黄完成签到 ,获得积分10
12秒前
13秒前
小马甲应助傅老师采纳,获得10
14秒前
韩嘉琦完成签到,获得积分10
15秒前
岁月轮回发布了新的文献求助10
15秒前
义气丹雪应助热情蓝天采纳,获得50
16秒前
沙拉酱完成签到,获得积分10
16秒前
dyyisash完成签到 ,获得积分10
16秒前
lee完成签到,获得积分10
17秒前
韩嘉琦发布了新的文献求助10
17秒前
云飞扬完成签到,获得积分10
17秒前
18秒前
19秒前
简单沛山完成签到,获得积分10
19秒前
沙拉酱发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
方森岩完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712008
求助须知:如何正确求助?哪些是违规求助? 5207072
关于积分的说明 15265901
捐赠科研通 4864051
什么是DOI,文献DOI怎么找? 2611188
邀请新用户注册赠送积分活动 1561440
关于科研通互助平台的介绍 1518761