亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structural Analysis and Prediction of Hematotoxicity Using Deep Learning Approaches

计算机科学 人工智能 适用范围 集合(抽象数据类型) 机器学习 转化(遗传学) 试验装置 深度学习 数据挖掘 数量结构-活动关系 化学 生物化学 基因 程序设计语言
作者
Teng-Zhi Long,Shaohua Shi,Shao Liu,Aiping Lü,Zhaoqian Liu,Min Li,Tingjun Hou,Dongsheng Cao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (1): 111-125 被引量:12
标识
DOI:10.1021/acs.jcim.2c01088
摘要

Hematotoxicity has been becoming a serious but overlooked toxicity in drug discovery. However, only a few in silico models have been reported for the prediction of hematotoxicity. In this study, we constructed a high-quality dataset comprising 759 hematotoxic compounds and 1623 nonhematotoxic compounds and then established a series of classification models based on a combination of seven machine learning (ML) algorithms and nine molecular representations. The results based on two data partitioning strategies and applicability domain (AD) analysis illustrate that the best prediction model based on Attentive FP yielded a balanced accuracy (BA) of 72.6%, an area under the receiver operating characteristic curve (AUC) value of 76.8% for the validation set, and a BA of 69.2%, an AUC of 75.9% for the test set. In addition, compared with existing filtering rules and models, our model achieved the highest BA value of 67.5% for the external validation set. Additionally, the shapley additive explanation (SHAP) and atom heatmap approaches were utilized to discover the important features and structural fragments related to hematotoxicity, which could offer helpful tips to detect undesired positive substances. Furthermore, matched molecular pair analysis (MMPA) and representative substructure derivation technique were employed to further characterize and investigate the transformation principles and distinctive structural features of hematotoxic chemicals. We believe that the novel graph-based deep learning algorithms and insightful interpretation presented in this study can be used as a trustworthy and effective tool to assess hematotoxicity in the development of new drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Kevin采纳,获得30
22秒前
慕青应助用眼睛吃饭的人采纳,获得10
26秒前
26秒前
平常从蓉完成签到,获得积分10
32秒前
某某某发布了新的文献求助10
32秒前
1分钟前
用眼睛吃饭的人完成签到,获得积分10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
1分钟前
某某某发布了新的文献求助10
1分钟前
MAYAN完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
LZN发布了新的文献求助10
2分钟前
2分钟前
gszy1975完成签到,获得积分10
2分钟前
某某某发布了新的文献求助10
2分钟前
棒棒冰完成签到 ,获得积分10
2分钟前
2分钟前
动听剑心发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
zjj关注了科研通微信公众号
3分钟前
平凡中的限量版完成签到,获得积分10
3分钟前
3分钟前
3分钟前
晴天发布了新的文献求助10
3分钟前
LZN发布了新的文献求助10
3分钟前
3分钟前
3分钟前
某某某发布了新的文献求助10
3分钟前
4分钟前
月军完成签到,获得积分10
4分钟前
彭于晏应助zjj采纳,获得10
4分钟前
492357816完成签到,获得积分10
4分钟前
4分钟前
姜且完成签到 ,获得积分10
4分钟前
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303270
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482479
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425919
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005