A Study on the Whole-skin Peeling System of a Snakehead Based on Three-dimensional Reconstruction

蛇头 人工智能 点云 卷积神经网络 计算机视觉 计算机科学 数学 算法 生物 渔业
作者
Ming Zhao,Min Lin,Ping Xu
出处
期刊:Applied Engineering in Agriculture [American Society of Agricultural and Biological Engineers]
卷期号:38 (5): 741-751
标识
DOI:10.13031/aea.15043
摘要

Highlights A 3D reconstruction algorithm is proposed to determine the snakehead area. The whole-skin peeling system of snakehead is designed by a convolutional neural network. An automatic whole-skin peeling device is presented with computer vision technology. Abstract. A whole-skin peeling system for a snakehead is designed in this article. The snakehead photos are taken from multiple angles and are first filtered to extract the image features, before reconstructing the sparse model. Then, the characteristic parameters of the snakehead are determined through the point cloud coordinates, and dense reconstruction is carried out based on sparse points. The accurate three-dimensional spatial coordinates of the snakehead are obtained by the octree algorithm and Poisson surface reconstruction algorithm. Based on the triangular meshing algorithm, the skin area of a snakehead is calculated to determine whether the snakehead meets the peeling conditions. A trained Faster Region Convolutional Neural Network (R-CNN) is used to identify the fin position on the snakehead reconstruction model and program the cutting route on the fish neck, while the cutting route of the fish belly is determined by selecting the area of the excretory hole through the ROI region of interest. Finally, the designed mechanical structure is used to peel the whole skin of the snakehead. The experimental results show that the maximum fluctuation rate of the snakehead area calculated by the proposed three-dimensional reconstruction algorithm is less than 4.0%, and the accuracy reaches 87.3%. The average precision (AP) for the determination method of the fish neck cutting position on the snakehead is 90.89%, which proves the effectiveness and feasibility of this method. The present results provide useful technical support for automating fish whole-skin peeling and shedding light on the accurate determination of the surface area and the extrication of the morphological feature parameters of other organisms. Keywords: Neural network, Point cloud, Snakehead, Skin peeling, Three-dimensional reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美平彤完成签到 ,获得积分10
1秒前
柔弱的便当完成签到 ,获得积分10
4秒前
Changlu完成签到,获得积分10
4秒前
山野发布了新的文献求助10
4秒前
小盆呐完成签到,获得积分10
5秒前
完美世界应助catherine采纳,获得10
8秒前
9秒前
大模型应助黎明之光采纳,获得10
10秒前
爱听歌笑寒完成签到,获得积分10
11秒前
胡萝卜须发布了新的文献求助10
12秒前
风趣的碧琴完成签到,获得积分10
13秒前
16秒前
宇儿完成签到,获得积分10
16秒前
我是老大应助orange9采纳,获得10
16秒前
科研q完成签到 ,获得积分10
18秒前
浮游应助胡萝卜须采纳,获得10
19秒前
21秒前
宇儿发布了新的文献求助10
21秒前
奉天逍遥发布了新的文献求助200
21秒前
小灰灰完成签到,获得积分10
22秒前
今天开心吗完成签到,获得积分10
24秒前
orange9发布了新的文献求助10
26秒前
26秒前
27秒前
积极老四完成签到,获得积分10
27秒前
27秒前
chipmunk完成签到,获得积分10
28秒前
olive发布了新的文献求助10
29秒前
你好完成签到 ,获得积分10
30秒前
30秒前
GGKing发布了新的文献求助10
31秒前
SciGPT应助车秋寒采纳,获得10
31秒前
灰灰完成签到 ,获得积分10
32秒前
徐徐完成签到 ,获得积分10
33秒前
lijing发布了新的文献求助10
34秒前
36秒前
orixero应助西岭采纳,获得10
36秒前
帅气小刺猬完成签到,获得积分10
37秒前
Akim应助GGKing采纳,获得10
38秒前
DengJJJ完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306147
求助须知:如何正确求助?哪些是违规求助? 4452011
关于积分的说明 13853601
捐赠科研通 4339475
什么是DOI,文献DOI怎么找? 2382636
邀请新用户注册赠送积分活动 1377583
关于科研通互助平台的介绍 1345190