Geometry-informed deep learning-based structural component segmentation of post-earthquake buildings

分割 组分(热力学) 计算机科学 人工智能 特征(语言学) 过程(计算) 卷积(计算机科学) 深度学习 模式识别(心理学) 计算机视觉 人工神经网络 语言学 热力学 操作系统 物理 哲学
作者
Yu Wang,Xin Jing,Wen‐Li Chen,Hui Li,Yang Xu,Qiangqiang Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:188: 110028-110028 被引量:14
标识
DOI:10.1016/j.ymssp.2022.110028
摘要

Traditional manual visual inspections have demonstrated certain shortcomings in post-earthquake assessment of urban buildings, such as being time-consuming and laborious. In contrast, computer vision (CV) and unmanned aerial vehicle (UAV) approaches have revealed competitive potentials in the fields of automatic data acquisition, data processing, and autonomous decision-making. In UAV images, structural components of post-earthquake buildings often present different scales, which are affected by different local damage. Therefore, acquiring the feature information of structural components has precisely been significant for refined damage assessment of post-earthquake buildings. This study proposes a geometry-informed deep learning-based structural component segmentation of post-earthquake buildings. An Enhanced UNet model is established with a new synthetical loss function containing the geometric consistency (GC) term. Given an edge closure of a connected domain for homogeneous structural components, the GC term comprises split line loss and area loss to adapt to the circumference and area constraints of each component region. The Enhanced UNet network is designed to improve the extraction capability of high-level features, and it includes six encoder stages (superior to five in the original version), of which the bottom four stages have many convolution layers, and five corresponding decoders. The investigated synthetic QuakeCity dataset includes 4,809 images with a resolution of 1,920 × 1,080 pixels. Training and test results reveal that compared to the original UNet, the proposed method achieves a more stable training process and higher test accuracy for structural component segmentation. The proposed method can achieve a mIoU of 97.97 %, which is 1.29 % higher than that of the original UNet. In addition, misrecognition of inner voids inside structural components is addressed, which further validates the optimization efficiency of the proposed geometric constraints. Ablation experiments are conducted to confirm the effectiveness of the proposed GC loss and Enhanced UNet network. The proposed method shows good generalization ability in robustness tests in complex real-world scenarios under various disturbances, including abnormal exposure and rain lines in various intensities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
领导范儿应助无辜不言采纳,获得10
1秒前
2秒前
文艺香菱发布了新的文献求助10
2秒前
alvin完成签到,获得积分10
3秒前
鲍建芳完成签到,获得积分10
4秒前
烟花应助@@@采纳,获得10
4秒前
zx598376321完成签到,获得积分10
4秒前
YL发布了新的文献求助10
4秒前
4秒前
CodeCraft应助nenshen采纳,获得10
4秒前
熊二完成签到,获得积分10
5秒前
33完成签到 ,获得积分10
5秒前
酷波er应助高贵路灯采纳,获得10
5秒前
Aten完成签到,获得积分10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
明理楷瑞完成签到,获得积分10
5秒前
云舒应助科研通管家采纳,获得40
5秒前
SYLH应助科研通管家采纳,获得20
5秒前
思源应助科研通管家采纳,获得50
5秒前
Linda完成签到 ,获得积分10
5秒前
SYLH应助科研通管家采纳,获得20
6秒前
英姑应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
wisdom应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
64658应助科研通管家采纳,获得10
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
酷炫翠桃应助科研通管家采纳,获得10
6秒前
雷雨泽石完成签到,获得积分10
6秒前
6秒前
6秒前
Bonnie完成签到 ,获得积分20
7秒前
海风发布了新的文献求助10
7秒前
8秒前
燃燃完成签到 ,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582