清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Geometry-informed deep learning-based structural component segmentation of post-earthquake buildings

分割 组分(热力学) 计算机科学 人工智能 特征(语言学) 过程(计算) 卷积(计算机科学) 深度学习 模式识别(心理学) 计算机视觉 人工神经网络 语言学 热力学 操作系统 物理 哲学
作者
Yu Wang,Xin Jing,Wen‐Li Chen,Hui Li,Yang Xu,Qiangqiang Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:188: 110028-110028 被引量:14
标识
DOI:10.1016/j.ymssp.2022.110028
摘要

Traditional manual visual inspections have demonstrated certain shortcomings in post-earthquake assessment of urban buildings, such as being time-consuming and laborious. In contrast, computer vision (CV) and unmanned aerial vehicle (UAV) approaches have revealed competitive potentials in the fields of automatic data acquisition, data processing, and autonomous decision-making. In UAV images, structural components of post-earthquake buildings often present different scales, which are affected by different local damage. Therefore, acquiring the feature information of structural components has precisely been significant for refined damage assessment of post-earthquake buildings. This study proposes a geometry-informed deep learning-based structural component segmentation of post-earthquake buildings. An Enhanced UNet model is established with a new synthetical loss function containing the geometric consistency (GC) term. Given an edge closure of a connected domain for homogeneous structural components, the GC term comprises split line loss and area loss to adapt to the circumference and area constraints of each component region. The Enhanced UNet network is designed to improve the extraction capability of high-level features, and it includes six encoder stages (superior to five in the original version), of which the bottom four stages have many convolution layers, and five corresponding decoders. The investigated synthetic QuakeCity dataset includes 4,809 images with a resolution of 1,920 × 1,080 pixels. Training and test results reveal that compared to the original UNet, the proposed method achieves a more stable training process and higher test accuracy for structural component segmentation. The proposed method can achieve a mIoU of 97.97 %, which is 1.29 % higher than that of the original UNet. In addition, misrecognition of inner voids inside structural components is addressed, which further validates the optimization efficiency of the proposed geometric constraints. Ablation experiments are conducted to confirm the effectiveness of the proposed GC loss and Enhanced UNet network. The proposed method shows good generalization ability in robustness tests in complex real-world scenarios under various disturbances, including abnormal exposure and rain lines in various intensities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
12秒前
科研通AI6应助Criminology34采纳,获得100
41秒前
45秒前
herococa应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
1分钟前
2分钟前
后陡门爱神完成签到 ,获得积分10
2分钟前
科研通AI6应助Criminology34采纳,获得100
2分钟前
勤劳的颤完成签到 ,获得积分10
2分钟前
滕皓轩完成签到 ,获得积分10
2分钟前
Ava应助Kyrie采纳,获得10
2分钟前
某奈在看海完成签到,获得积分10
2分钟前
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
莫莫完成签到 ,获得积分10
3分钟前
Kyrie完成签到,获得积分10
3分钟前
研友_8WOBM8发布了新的文献求助10
3分钟前
4分钟前
冷傲半邪完成签到,获得积分10
4分钟前
yyds给yyds的求助进行了留言
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
如歌完成签到,获得积分10
4分钟前
4分钟前
烂漫的绿茶完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
yyds发布了新的文献求助30
6分钟前
量子星尘发布了新的文献求助10
6分钟前
蝎子莱莱xth完成签到,获得积分10
6分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
6分钟前
Square完成签到,获得积分10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
芳菲依旧应助紫熊采纳,获得30
7分钟前
7分钟前
haifenghou应助紫熊采纳,获得20
7分钟前
7分钟前
香蕉诗蕊应助紫熊采纳,获得10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658233
求助须知:如何正确求助?哪些是违规求助? 4818796
关于积分的说明 15081057
捐赠科研通 4816735
什么是DOI,文献DOI怎么找? 2577564
邀请新用户注册赠送积分活动 1532491
关于科研通互助平台的介绍 1491120