亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Geometry-informed deep learning-based structural component segmentation of post-earthquake buildings

分割 组分(热力学) 计算机科学 人工智能 特征(语言学) 过程(计算) 卷积(计算机科学) 深度学习 模式识别(心理学) 计算机视觉 人工神经网络 物理 热力学 语言学 哲学 操作系统
作者
Yu Wang,Xin Jing,Wen‐Li Chen,Hui Li,Yang Xu,Qiangqiang Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:188: 110028-110028 被引量:14
标识
DOI:10.1016/j.ymssp.2022.110028
摘要

Traditional manual visual inspections have demonstrated certain shortcomings in post-earthquake assessment of urban buildings, such as being time-consuming and laborious. In contrast, computer vision (CV) and unmanned aerial vehicle (UAV) approaches have revealed competitive potentials in the fields of automatic data acquisition, data processing, and autonomous decision-making. In UAV images, structural components of post-earthquake buildings often present different scales, which are affected by different local damage. Therefore, acquiring the feature information of structural components has precisely been significant for refined damage assessment of post-earthquake buildings. This study proposes a geometry-informed deep learning-based structural component segmentation of post-earthquake buildings. An Enhanced UNet model is established with a new synthetical loss function containing the geometric consistency (GC) term. Given an edge closure of a connected domain for homogeneous structural components, the GC term comprises split line loss and area loss to adapt to the circumference and area constraints of each component region. The Enhanced UNet network is designed to improve the extraction capability of high-level features, and it includes six encoder stages (superior to five in the original version), of which the bottom four stages have many convolution layers, and five corresponding decoders. The investigated synthetic QuakeCity dataset includes 4,809 images with a resolution of 1,920 × 1,080 pixels. Training and test results reveal that compared to the original UNet, the proposed method achieves a more stable training process and higher test accuracy for structural component segmentation. The proposed method can achieve a mIoU of 97.97 %, which is 1.29 % higher than that of the original UNet. In addition, misrecognition of inner voids inside structural components is addressed, which further validates the optimization efficiency of the proposed geometric constraints. Ablation experiments are conducted to confirm the effectiveness of the proposed GC loss and Enhanced UNet network. The proposed method shows good generalization ability in robustness tests in complex real-world scenarios under various disturbances, including abnormal exposure and rain lines in various intensities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
简柠完成签到,获得积分10
5秒前
orixero应助橘子有点酸采纳,获得10
9秒前
9秒前
优美紫槐应助空凌采纳,获得10
15秒前
温婉的不弱完成签到,获得积分20
15秒前
nanxing完成签到,获得积分20
20秒前
完美世界应助温婉的不弱采纳,获得10
25秒前
ceeray23发布了新的文献求助20
33秒前
37秒前
doctor2023发布了新的文献求助10
44秒前
46秒前
Felix0929发布了新的文献求助10
50秒前
阿宇发布了新的文献求助10
1分钟前
小蘑菇应助LeezZZZ采纳,获得10
1分钟前
PYF完成签到,获得积分10
1分钟前
绒绒完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lolin741发布了新的文献求助10
1分钟前
chen完成签到 ,获得积分10
1分钟前
莫名乐乐完成签到,获得积分10
1分钟前
绿柏完成签到,获得积分10
1分钟前
1分钟前
1分钟前
kl完成签到,获得积分10
1分钟前
LeezZZZ发布了新的文献求助10
1分钟前
1分钟前
研友_VZG7GZ应助LeezZZZ采纳,获得10
1分钟前
2分钟前
LeezZZZ发布了新的文献求助10
2分钟前
2分钟前
2分钟前
桐桐应助LeezZZZ采纳,获得10
2分钟前
2分钟前
2分钟前
bitman发布了新的文献求助10
2分钟前
2分钟前
长小右发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603266
求助须知:如何正确求助?哪些是违规求助? 4688354
关于积分的说明 14853288
捐赠科研通 4688706
什么是DOI,文献DOI怎么找? 2540535
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471543