Geometry-informed deep learning-based structural component segmentation of post-earthquake buildings

分割 组分(热力学) 计算机科学 人工智能 特征(语言学) 过程(计算) 卷积(计算机科学) 深度学习 模式识别(心理学) 计算机视觉 人工神经网络 物理 热力学 语言学 哲学 操作系统
作者
Yu Wang,Xin Jing,Wen‐Li Chen,Hui Li,Yang Xu,Qiangqiang Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:188: 110028-110028 被引量:14
标识
DOI:10.1016/j.ymssp.2022.110028
摘要

Traditional manual visual inspections have demonstrated certain shortcomings in post-earthquake assessment of urban buildings, such as being time-consuming and laborious. In contrast, computer vision (CV) and unmanned aerial vehicle (UAV) approaches have revealed competitive potentials in the fields of automatic data acquisition, data processing, and autonomous decision-making. In UAV images, structural components of post-earthquake buildings often present different scales, which are affected by different local damage. Therefore, acquiring the feature information of structural components has precisely been significant for refined damage assessment of post-earthquake buildings. This study proposes a geometry-informed deep learning-based structural component segmentation of post-earthquake buildings. An Enhanced UNet model is established with a new synthetical loss function containing the geometric consistency (GC) term. Given an edge closure of a connected domain for homogeneous structural components, the GC term comprises split line loss and area loss to adapt to the circumference and area constraints of each component region. The Enhanced UNet network is designed to improve the extraction capability of high-level features, and it includes six encoder stages (superior to five in the original version), of which the bottom four stages have many convolution layers, and five corresponding decoders. The investigated synthetic QuakeCity dataset includes 4,809 images with a resolution of 1,920 × 1,080 pixels. Training and test results reveal that compared to the original UNet, the proposed method achieves a more stable training process and higher test accuracy for structural component segmentation. The proposed method can achieve a mIoU of 97.97 %, which is 1.29 % higher than that of the original UNet. In addition, misrecognition of inner voids inside structural components is addressed, which further validates the optimization efficiency of the proposed geometric constraints. Ablation experiments are conducted to confirm the effectiveness of the proposed GC loss and Enhanced UNet network. The proposed method shows good generalization ability in robustness tests in complex real-world scenarios under various disturbances, including abnormal exposure and rain lines in various intensities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly完成签到,获得积分10
刚刚
2秒前
2秒前
SCINEXUS应助多多发SCI采纳,获得20
2秒前
英俊的铭应助平常雨寒采纳,获得10
3秒前
bofu发布了新的文献求助10
3秒前
木木木木完成签到,获得积分10
5秒前
klb13应助动听幻儿采纳,获得20
6秒前
6秒前
领导范儿应助baby的跑男采纳,获得10
6秒前
7秒前
nihaoya172发布了新的文献求助10
7秒前
bofu发布了新的文献求助10
11秒前
12秒前
小天才123发布了新的文献求助10
12秒前
科研通AI2S应助寂寞的梦芝采纳,获得10
12秒前
14秒前
ww发布了新的文献求助10
15秒前
领导范儿应助FHW采纳,获得10
15秒前
酷波er应助彪壮的一曲采纳,获得10
17秒前
多多发SCI完成签到,获得积分10
18秒前
19秒前
阔达达完成签到,获得积分10
20秒前
20秒前
bofu发布了新的文献求助10
22秒前
22秒前
等待世平完成签到,获得积分10
23秒前
淡淡从安完成签到 ,获得积分10
23秒前
25秒前
25秒前
26秒前
26秒前
失眠的怀柔完成签到 ,获得积分10
26秒前
机智的傲白应助华华爸采纳,获得30
26秒前
科研小民工完成签到,获得积分10
26秒前
深情安青应助ww采纳,获得30
27秒前
十一发布了新的文献求助10
27秒前
bofu发布了新的文献求助10
29秒前
30秒前
Lucas完成签到,获得积分10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574