Geometry-informed deep learning-based structural component segmentation of post-earthquake buildings

分割 组分(热力学) 计算机科学 人工智能 特征(语言学) 过程(计算) 卷积(计算机科学) 深度学习 模式识别(心理学) 计算机视觉 人工神经网络 物理 热力学 语言学 哲学 操作系统
作者
Yu Wang,Xin Jing,Wen‐Li Chen,Hui Li,Yang Xu,Qiangqiang Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:188: 110028-110028 被引量:14
标识
DOI:10.1016/j.ymssp.2022.110028
摘要

Traditional manual visual inspections have demonstrated certain shortcomings in post-earthquake assessment of urban buildings, such as being time-consuming and laborious. In contrast, computer vision (CV) and unmanned aerial vehicle (UAV) approaches have revealed competitive potentials in the fields of automatic data acquisition, data processing, and autonomous decision-making. In UAV images, structural components of post-earthquake buildings often present different scales, which are affected by different local damage. Therefore, acquiring the feature information of structural components has precisely been significant for refined damage assessment of post-earthquake buildings. This study proposes a geometry-informed deep learning-based structural component segmentation of post-earthquake buildings. An Enhanced UNet model is established with a new synthetical loss function containing the geometric consistency (GC) term. Given an edge closure of a connected domain for homogeneous structural components, the GC term comprises split line loss and area loss to adapt to the circumference and area constraints of each component region. The Enhanced UNet network is designed to improve the extraction capability of high-level features, and it includes six encoder stages (superior to five in the original version), of which the bottom four stages have many convolution layers, and five corresponding decoders. The investigated synthetic QuakeCity dataset includes 4,809 images with a resolution of 1,920 × 1,080 pixels. Training and test results reveal that compared to the original UNet, the proposed method achieves a more stable training process and higher test accuracy for structural component segmentation. The proposed method can achieve a mIoU of 97.97 %, which is 1.29 % higher than that of the original UNet. In addition, misrecognition of inner voids inside structural components is addressed, which further validates the optimization efficiency of the proposed geometric constraints. Ablation experiments are conducted to confirm the effectiveness of the proposed GC loss and Enhanced UNet network. The proposed method shows good generalization ability in robustness tests in complex real-world scenarios under various disturbances, including abnormal exposure and rain lines in various intensities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到 ,获得积分10
刚刚
1秒前
好哥哥发布了新的文献求助10
1秒前
huster完成签到,获得积分10
1秒前
孙笑川完成签到,获得积分10
3秒前
4秒前
5秒前
孤独念柏完成签到,获得积分10
5秒前
peng完成签到,获得积分10
5秒前
行周关注了科研通微信公众号
5秒前
典雅的夜梦完成签到 ,获得积分10
6秒前
活泼的向日葵完成签到,获得积分10
6秒前
8秒前
9秒前
萱棚发布了新的文献求助10
9秒前
怕黑的芫荽完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
linyu发布了新的文献求助10
12秒前
海绵宝宝完成签到,获得积分20
12秒前
北辰完成签到,获得积分20
13秒前
草木发布了新的文献求助10
15秒前
高贵梦安完成签到,获得积分10
15秒前
蒋若风发布了新的文献求助10
15秒前
鑫光熠熠完成签到 ,获得积分10
16秒前
左右发布了新的文献求助10
16秒前
青鱼完成签到,获得积分10
18秒前
忧伤的天真完成签到,获得积分10
18秒前
xsc完成签到,获得积分10
18秒前
百变小王111完成签到,获得积分10
19秒前
21秒前
Solaris完成签到,获得积分10
22秒前
23秒前
左右完成签到,获得积分10
24秒前
111完成签到,获得积分10
26秒前
默默襄发布了新的文献求助10
28秒前
XudongHou发布了新的文献求助30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600866
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843743
捐赠科研通 4678603
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241