清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Geometry-informed deep learning-based structural component segmentation of post-earthquake buildings

分割 组分(热力学) 计算机科学 人工智能 特征(语言学) 过程(计算) 卷积(计算机科学) 深度学习 模式识别(心理学) 计算机视觉 人工神经网络 语言学 热力学 操作系统 物理 哲学
作者
Yu Wang,Xin Jing,Wen‐Li Chen,Hui Li,Yang Xu,Qiangqiang Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:188: 110028-110028 被引量:14
标识
DOI:10.1016/j.ymssp.2022.110028
摘要

Traditional manual visual inspections have demonstrated certain shortcomings in post-earthquake assessment of urban buildings, such as being time-consuming and laborious. In contrast, computer vision (CV) and unmanned aerial vehicle (UAV) approaches have revealed competitive potentials in the fields of automatic data acquisition, data processing, and autonomous decision-making. In UAV images, structural components of post-earthquake buildings often present different scales, which are affected by different local damage. Therefore, acquiring the feature information of structural components has precisely been significant for refined damage assessment of post-earthquake buildings. This study proposes a geometry-informed deep learning-based structural component segmentation of post-earthquake buildings. An Enhanced UNet model is established with a new synthetical loss function containing the geometric consistency (GC) term. Given an edge closure of a connected domain for homogeneous structural components, the GC term comprises split line loss and area loss to adapt to the circumference and area constraints of each component region. The Enhanced UNet network is designed to improve the extraction capability of high-level features, and it includes six encoder stages (superior to five in the original version), of which the bottom four stages have many convolution layers, and five corresponding decoders. The investigated synthetic QuakeCity dataset includes 4,809 images with a resolution of 1,920 × 1,080 pixels. Training and test results reveal that compared to the original UNet, the proposed method achieves a more stable training process and higher test accuracy for structural component segmentation. The proposed method can achieve a mIoU of 97.97 %, which is 1.29 % higher than that of the original UNet. In addition, misrecognition of inner voids inside structural components is addressed, which further validates the optimization efficiency of the proposed geometric constraints. Ablation experiments are conducted to confirm the effectiveness of the proposed GC loss and Enhanced UNet network. The proposed method shows good generalization ability in robustness tests in complex real-world scenarios under various disturbances, including abnormal exposure and rain lines in various intensities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研啄木鸟完成签到 ,获得积分10
17秒前
聪明初彤完成签到,获得积分10
45秒前
KGYM完成签到,获得积分20
57秒前
KGYM发布了新的文献求助10
1分钟前
LiXF完成签到,获得积分10
1分钟前
1437594843完成签到 ,获得积分10
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
奥利奥利奥完成签到,获得积分10
1分钟前
Ava应助可可采纳,获得10
1分钟前
Owen应助斯文的傲珊采纳,获得10
2分钟前
番茄酱完成签到 ,获得积分10
2分钟前
无悔完成签到 ,获得积分10
2分钟前
小林完成签到 ,获得积分10
2分钟前
花花521完成签到,获得积分10
3分钟前
CipherSage应助zyc采纳,获得10
3分钟前
是我不得开心妍完成签到 ,获得积分10
3分钟前
3分钟前
zyc发布了新的文献求助10
3分钟前
jlwang完成签到,获得积分10
3分钟前
xiaoyi完成签到 ,获得积分10
3分钟前
活力的珊完成签到 ,获得积分10
4分钟前
4分钟前
ARESCI完成签到,获得积分20
4分钟前
cgs完成签到 ,获得积分10
4分钟前
懒惰扼杀激情完成签到 ,获得积分10
4分钟前
ARESCI发布了新的文献求助10
4分钟前
酷酷的紫南完成签到 ,获得积分10
4分钟前
乐乐应助ARESCI采纳,获得10
4分钟前
汉堡包应助ARESCI采纳,获得10
4分钟前
科目三应助科研通管家采纳,获得150
5分钟前
大个应助完美芒果采纳,获得10
5分钟前
5分钟前
完美芒果发布了新的文献求助10
5分钟前
QCB完成签到 ,获得积分10
5分钟前
踏雪完成签到,获得积分10
6分钟前
jsinm-thyroid完成签到 ,获得积分10
6分钟前
digger2023完成签到 ,获得积分10
7分钟前
nav完成签到 ,获得积分10
7分钟前
浮游应助科研通管家采纳,获得10
7分钟前
Jonathan完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5368280
求助须知:如何正确求助?哪些是违规求助? 4496188
关于积分的说明 13996744
捐赠科研通 4401334
什么是DOI,文献DOI怎么找? 2417793
邀请新用户注册赠送积分活动 1410511
关于科研通互助平台的介绍 1386228