清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Geometry-informed deep learning-based structural component segmentation of post-earthquake buildings

分割 组分(热力学) 计算机科学 人工智能 特征(语言学) 过程(计算) 卷积(计算机科学) 深度学习 模式识别(心理学) 计算机视觉 人工神经网络 语言学 热力学 操作系统 物理 哲学
作者
Yu Wang,Xin Jing,Wen‐Li Chen,Hui Li,Yang Xu,Qiangqiang Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:188: 110028-110028 被引量:14
标识
DOI:10.1016/j.ymssp.2022.110028
摘要

Traditional manual visual inspections have demonstrated certain shortcomings in post-earthquake assessment of urban buildings, such as being time-consuming and laborious. In contrast, computer vision (CV) and unmanned aerial vehicle (UAV) approaches have revealed competitive potentials in the fields of automatic data acquisition, data processing, and autonomous decision-making. In UAV images, structural components of post-earthquake buildings often present different scales, which are affected by different local damage. Therefore, acquiring the feature information of structural components has precisely been significant for refined damage assessment of post-earthquake buildings. This study proposes a geometry-informed deep learning-based structural component segmentation of post-earthquake buildings. An Enhanced UNet model is established with a new synthetical loss function containing the geometric consistency (GC) term. Given an edge closure of a connected domain for homogeneous structural components, the GC term comprises split line loss and area loss to adapt to the circumference and area constraints of each component region. The Enhanced UNet network is designed to improve the extraction capability of high-level features, and it includes six encoder stages (superior to five in the original version), of which the bottom four stages have many convolution layers, and five corresponding decoders. The investigated synthetic QuakeCity dataset includes 4,809 images with a resolution of 1,920 × 1,080 pixels. Training and test results reveal that compared to the original UNet, the proposed method achieves a more stable training process and higher test accuracy for structural component segmentation. The proposed method can achieve a mIoU of 97.97 %, which is 1.29 % higher than that of the original UNet. In addition, misrecognition of inner voids inside structural components is addressed, which further validates the optimization efficiency of the proposed geometric constraints. Ablation experiments are conducted to confirm the effectiveness of the proposed GC loss and Enhanced UNet network. The proposed method shows good generalization ability in robustness tests in complex real-world scenarios under various disturbances, including abnormal exposure and rain lines in various intensities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助愉快怜菡采纳,获得10
25秒前
紫熊发布了新的文献求助10
31秒前
科研通AI5应助容若采纳,获得10
37秒前
科研通AI2S应助Sym采纳,获得10
1分钟前
清脆的靖仇完成签到,获得积分10
1分钟前
紫熊完成签到,获得积分10
1分钟前
JamesPei应助Sym采纳,获得10
2分钟前
自然亦凝完成签到,获得积分10
3分钟前
我我我完成签到,获得积分10
4分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
4分钟前
4分钟前
田様应助容若采纳,获得10
4分钟前
欧皇发布了新的文献求助10
4分钟前
4分钟前
思源应助容若采纳,获得10
5分钟前
cqhecq完成签到,获得积分10
6分钟前
6分钟前
6分钟前
逐梦小绳发布了新的文献求助10
6分钟前
方白秋完成签到,获得积分0
6分钟前
共享精神应助容若采纳,获得10
6分钟前
new1完成签到,获得积分10
8分钟前
dong完成签到,获得积分10
8分钟前
可爱的函函应助容若采纳,获得10
8分钟前
8分钟前
dong发布了新的文献求助10
8分钟前
snowdream完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助100
8分钟前
今后应助容若采纳,获得10
9分钟前
neversay4ever完成签到 ,获得积分10
9分钟前
风中的丝袜完成签到,获得积分10
9分钟前
水雾完成签到 ,获得积分10
10分钟前
orixero应助容若采纳,获得10
10分钟前
Raunio完成签到,获得积分10
10分钟前
芳华如梦完成签到 ,获得积分10
11分钟前
研友_VZG7GZ应助容若采纳,获得10
11分钟前
一盏壶完成签到,获得积分10
11分钟前
11分钟前
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889676
求助须知:如何正确求助?哪些是违规求助? 4173588
关于积分的说明 12952267
捐赠科研通 3935088
什么是DOI,文献DOI怎么找? 2159212
邀请新用户注册赠送积分活动 1177552
关于科研通互助平台的介绍 1082487