Geometry-informed deep learning-based structural component segmentation of post-earthquake buildings

分割 组分(热力学) 计算机科学 人工智能 特征(语言学) 过程(计算) 卷积(计算机科学) 深度学习 模式识别(心理学) 计算机视觉 人工神经网络 物理 热力学 语言学 哲学 操作系统
作者
Yu Wang,Xin Jing,Wen‐Li Chen,Hui Li,Yang Xu,Qiangqiang Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:188: 110028-110028 被引量:14
标识
DOI:10.1016/j.ymssp.2022.110028
摘要

Traditional manual visual inspections have demonstrated certain shortcomings in post-earthquake assessment of urban buildings, such as being time-consuming and laborious. In contrast, computer vision (CV) and unmanned aerial vehicle (UAV) approaches have revealed competitive potentials in the fields of automatic data acquisition, data processing, and autonomous decision-making. In UAV images, structural components of post-earthquake buildings often present different scales, which are affected by different local damage. Therefore, acquiring the feature information of structural components has precisely been significant for refined damage assessment of post-earthquake buildings. This study proposes a geometry-informed deep learning-based structural component segmentation of post-earthquake buildings. An Enhanced UNet model is established with a new synthetical loss function containing the geometric consistency (GC) term. Given an edge closure of a connected domain for homogeneous structural components, the GC term comprises split line loss and area loss to adapt to the circumference and area constraints of each component region. The Enhanced UNet network is designed to improve the extraction capability of high-level features, and it includes six encoder stages (superior to five in the original version), of which the bottom four stages have many convolution layers, and five corresponding decoders. The investigated synthetic QuakeCity dataset includes 4,809 images with a resolution of 1,920 × 1,080 pixels. Training and test results reveal that compared to the original UNet, the proposed method achieves a more stable training process and higher test accuracy for structural component segmentation. The proposed method can achieve a mIoU of 97.97 %, which is 1.29 % higher than that of the original UNet. In addition, misrecognition of inner voids inside structural components is addressed, which further validates the optimization efficiency of the proposed geometric constraints. Ablation experiments are conducted to confirm the effectiveness of the proposed GC loss and Enhanced UNet network. The proposed method shows good generalization ability in robustness tests in complex real-world scenarios under various disturbances, including abnormal exposure and rain lines in various intensities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
专一的元柏完成签到 ,获得积分10
2秒前
陈强发布了新的文献求助10
4秒前
宁静致远QY完成签到,获得积分10
4秒前
5秒前
HMLM完成签到,获得积分10
5秒前
封夕完成签到 ,获得积分10
5秒前
二由发布了新的文献求助10
5秒前
加油完成签到,获得积分10
6秒前
阿鱼阿鱼关注了科研通微信公众号
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
9秒前
10秒前
liuxy发布了新的文献求助10
11秒前
万能图书馆应助fyy采纳,获得10
11秒前
kate发布了新的文献求助10
11秒前
12秒前
12秒前
LL发布了新的文献求助10
12秒前
Alden发布了新的文献求助10
13秒前
廖天佑完成签到,获得积分0
13秒前
phil发布了新的文献求助10
13秒前
浮游应助喽噜嘟咦呀采纳,获得10
15秒前
pigzhu完成签到 ,获得积分10
17秒前
17秒前
陈强完成签到,获得积分10
20秒前
20秒前
20秒前
FashionBoy应助梁不正采纳,获得10
21秒前
二由完成签到 ,获得积分10
21秒前
23秒前
bobo发布了新的文献求助10
24秒前
Cc8完成签到,获得积分10
24秒前
24秒前
拼搏的亦玉完成签到,获得积分10
24秒前
fyy发布了新的文献求助10
24秒前
25秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499624
求助须知:如何正确求助?哪些是违规求助? 4596396
关于积分的说明 14454419
捐赠科研通 4529576
什么是DOI,文献DOI怎么找? 2482089
邀请新用户注册赠送积分活动 1466061
关于科研通互助平台的介绍 1438891