Artificial Intelligence and Whole Slide Imaging Assist in Thyroid Indeterminate Cytology: A Systematic Review

卷积神经网络 医学 人工智能 细胞病理学 人工神经网络 巴氏染色 扫描仪 感知器 模式识别(心理学) 机器学习 医学物理学 放射科 计算机科学 病理 细胞学 宫颈癌 癌症 内科学
作者
Olia Poursina,Azadeh Khayyat,Sara Maleki,Alireza Amin
出处
期刊:Acta Cytologica [S. Karger AG]
卷期号:: 1-12
标识
DOI:10.1159/000543344
摘要

Thyroid cytopathology, particularly in cases of atypia of undetermined significance/follicular lesions of undetermined significance (AUS/FLUS), suffers from suboptimal sensitivity and specificity challenges. Recent advancements in digital pathology and artificial intelligence (AI) hold promise for enhancing diagnostic accuracy. This systematic review included studies from 2000 to 2023, focusing on diagnostic accuracy in AUS/FLUS cases using AI, whole slide imaging (WSI), or both. Of the 176 studies, 13 met the inclusion criteria. The datasets range from 145 to 964 WSIs, with an overall number of 494 AUS cases ranging from eight to 254. Five studies used convolutional neural networks (CNN), and two used artificial neural networks (ANN). The preparation methods included Romanowsky-stained smears either alone or combined with Papanicolaou-stained or H&E, and Liquid-based cytology (ThinPrep). The scanner models that were used for scanning the slides varied, including Leica/Aperio, Alyuda Neurointelligence Cupertino, and PANNORAMIC™ Desk Scanner. Classifiers used include Feedforward Neural Networks (FFNN), Two-Layer Feedforward Neural Networks (2L-FFNN), Classifier Machine Learning Algorithm (MLA), Visual Geometry Group 11 (VGG11), Gradient Boosting Trees (GBT), Extra Trees Classifier (ETC), YOLOv4, EfficientNetV2-L, Back-Propagation on Multi-Layer Perceptron, and MobileNetV2. Although cytopathology is late in adopting AI, available studies have shown promising results in differentiating between thyroid lesions, including AUS/FLUS. Our review showed that AI can be especially effective in removing sources of errors such as subjective assessment, variation in staining, and algorithms. CNN has been successful in processing WSI data and identifying diagnostic features with minimal human supervision. ANNs excelled in integrating structured clinical data with image-derived features, particularly when paired with WSI, enhancing diagnostic accuracy for indeterminate thyroid lesions. A combined approach using both CNN and ANN can take advantage of their strengths. While AI and WSI integration shows promise in improving diagnostic accuracy and reducing uncertainty in indeterminate thyroid cytology, challenges such as the lack of standardization need to be addressed. This review highlights the heterogeneity in study designs, dataset sizes, and evaluation metrics. Future studies should focus on hybrid AI models, CNNs, ANNs, and standardized methodologies to maximize clinical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
12完成签到 ,获得积分10
2秒前
xyzdmmm发布了新的文献求助10
2秒前
MinQi完成签到,获得积分10
2秒前
Ava应助之遥采纳,获得10
3秒前
情怀应助潇潇微雨采纳,获得10
4秒前
酷波er应助潇潇微雨采纳,获得10
4秒前
4秒前
ZML发布了新的文献求助10
4秒前
kikikiki发布了新的文献求助10
5秒前
Aimee发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
8秒前
2220895发布了新的文献求助20
8秒前
贾舒涵发布了新的文献求助10
9秒前
江流有声发布了新的文献求助30
9秒前
小六发布了新的文献求助10
9秒前
Felix发布了新的文献求助20
11秒前
小蘑菇应助从容的夏瑶采纳,获得10
13秒前
淡淡紫山发布了新的文献求助20
13秒前
jing发布了新的文献求助20
14秒前
14秒前
大个应助wss采纳,获得10
15秒前
zhaoyuwei完成签到,获得积分10
16秒前
16秒前
16秒前
Aimee完成签到,获得积分10
17秒前
澄麦发布了新的文献求助10
17秒前
19秒前
桃桃淘发布了新的文献求助10
20秒前
20秒前
汉堡包应助2220895采纳,获得10
21秒前
许许发布了新的文献求助10
22秒前
22秒前
咪吖发布了新的文献求助30
23秒前
阿元完成签到,获得积分10
24秒前
hgg完成签到,获得积分10
24秒前
lq完成签到,获得积分10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462073
求助须知:如何正确求助?哪些是违规求助? 3055716
关于积分的说明 9048980
捐赠科研通 2745328
什么是DOI,文献DOI怎么找? 1506180
科研通“疑难数据库(出版商)”最低求助积分说明 696000
邀请新用户注册赠送积分活动 695560