Cation‐Vacancy‐Induced Reinforced Electrochemical Surface Reconstruction on Spinel Nickel Ferrite for Boosting Water Oxidation

材料科学 尖晶石 电化学 空位缺陷 铁氧体(磁铁) 冶金 化学工程 复合材料 核磁共振 物理化学 电极 物理 工程类 化学
作者
Yuxin Li,Zhe Zhang,Chun Guang Li,Xiangyan Hou,Jianrong Zeng,Xiaobo Chen,Zhan Shi,Shouhua Feng
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:35 (13) 被引量:20
标识
DOI:10.1002/adfm.202417983
摘要

Abstract Spinel oxides still exhibit unsatisfactory electrocatalytic performance toward oxygen evolution reaction (OER) given their low intrinsic activity, poor electronic conductivity, and limited exposure of reaction sites. Defect engineering has garnered intensive attention and become a promising strategy to enhance the reaction kinetics. In this work, spinel NiFe 2 O 4 nanospheres with rich nickel vacancies are prepared via simple one‐pot hydrothermal synthesis. Combined electrochemical measurements and in situ Raman characterization prove that a relatively higher degree of electrochemical surface reconstruction is realized after the introduction of nickel vacancies in NiFe 2 O 4 , in addition to boosted OER electrocatalytic performance. Further theoretical calculations also reveal that the cation‐vacancy‐induced effect can reduce the difficulty for surface reconstruction by increasing the octahedral nickel‐oxygen covalency in nickel ferrite. Contributed to the great structural flexibility and optimized electronic structure of the pre‐catalyst, the reconstructed electrocatalyst presents desirable OER performance, accompanied by long durability in alkaline solution. This work provides a sound strategy to intensify surface reconstruction on spinel oxides and design electrocatalysts with high efficiency toward water oxidation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
327完成签到,获得积分10
刚刚
脑壳疼完成签到,获得积分10
1秒前
1秒前
hhhooo完成签到,获得积分10
1秒前
朴艺晨完成签到 ,获得积分10
1秒前
Vicky发布了新的文献求助10
2秒前
赘婿应助guan采纳,获得30
2秒前
Yv发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
panzhongjie发布了新的文献求助10
3秒前
共享精神应助jason采纳,获得10
4秒前
longlong完成签到,获得积分10
4秒前
5秒前
left_right完成签到,获得积分10
5秒前
6秒前
执着的麦片完成签到,获得积分10
8秒前
8秒前
云不归完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
junxu发布了新的文献求助10
12秒前
some发布了新的文献求助10
12秒前
14秒前
坚果发布了新的文献求助10
14秒前
风趣冬瓜发布了新的文献求助10
15秒前
羊羊发布了新的文献求助10
15秒前
18秒前
田様应助大力山槐采纳,获得10
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
19秒前
花卷应助科研通管家采纳,获得20
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
彭于彦祖应助科研通管家采纳,获得30
19秒前
Owen应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601572
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847258
捐赠科研通 4681425
什么是DOI,文献DOI怎么找? 2539420
邀请新用户注册赠送积分活动 1506336
关于科研通互助平台的介绍 1471297