Hierarchical Online Air Combat Maneuver Decision Making and Control Based on Surrogate-Assisted Differential Evolution Algorithm

差异进化 计算机科学 弹道 替代模型 轨迹优化 最优化问题 差速器(机械装置) 数学优化 控制(管理) 最优控制 控制理论(社会学) 算法 人工智能 工程类 机器学习 数学 物理 航空航天工程 天文
作者
Mulai Tan,Haocheng Sun,Dali Ding,Huan Zhou,Tong Han,Y. Luo
出处
期刊:Drones [MDPI AG]
卷期号:9 (2): 106-106
标识
DOI:10.3390/drones9020106
摘要

One-to-one within-visual-range air combat of unmanned combat aerial vehicles (UCAVs) requires fast, continuous, and accurate decision-making to achieve air combat victory. In order to solve the current problems of insufficient real-time performance of traditional intelligent optimization algorithms for solving decision-making problems and the mismatch between the planning trajectory and the actual flight trajectory caused by the difference between the decision-making model and the actual aircraft model, this paper proposes a hierarchical on-line air combat maneuvering decision-making and control framework. Considering the real-time constraints, the maneuver decision problem is transformed into an expensive optimization problem at the decision planning layer. The surrogate-assisted differential evolution algorithm is proposed on the basis of the original differential evolution algorithm, and the planning trajectory is obtained through the 5 degrees of freedom (DOF) model. In the control execution layer, the planning trajectory is tracked through the nonlinear dynamic inverse tracking control method to realize the high-precision control of the 6DOF model. The simulation is carried out under four different initial situation scenarios, including head-on neutral, dominant, parallel neutral, and disadvantaged situations. The Monte Carlo simulation results show that the Surrogate-assisted differential evolution algorithm (SADE) can achieve a win rate of over 53% in all four initial scenarios. The proposed maneuver decision and control framework in this article achieves smooth flight trajectories and stable aircraft control, with each decision average taking 0.08 s, effectively solving the real-time problem of intelligent optimization algorithms in maneuver decision problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
latata完成签到,获得积分10
刚刚
赘婿应助dudulu采纳,获得10
1秒前
妖魔鬼怪快离开完成签到,获得积分10
1秒前
mf完成签到 ,获得积分10
2秒前
虚幻远侵发布了新的文献求助10
4秒前
浮游应助王滕采纳,获得10
4秒前
jiangzhi发布了新的文献求助30
4秒前
欣慰冬亦完成签到,获得积分10
4秒前
5秒前
阿猫完成签到,获得积分10
5秒前
汉堡包应助LTT采纳,获得10
6秒前
小宅女完成签到 ,获得积分10
6秒前
天天快乐应助joey106采纳,获得10
8秒前
蔡继海发布了新的文献求助10
8秒前
z7777777完成签到,获得积分10
8秒前
9秒前
打打应助辛勤的管道工采纳,获得10
9秒前
zy发布了新的文献求助10
10秒前
黑白菜完成签到,获得积分10
10秒前
远辰完成签到,获得积分10
14秒前
Akim应助TAO采纳,获得10
14秒前
15秒前
细腻灯泡发布了新的文献求助10
15秒前
16秒前
隐形元绿完成签到,获得积分10
16秒前
小白白完成签到 ,获得积分10
16秒前
天天快乐应助kyt666采纳,获得10
17秒前
深情安青应助小鹏采纳,获得10
17秒前
chall应助玛琪玛小姐的狗采纳,获得10
18秒前
隐形元绿发布了新的文献求助10
19秒前
21秒前
22秒前
22秒前
活力奇异果完成签到,获得积分10
22秒前
云竹丶完成签到,获得积分10
23秒前
25秒前
25秒前
chall应助玛琪玛小姐的狗采纳,获得10
26秒前
兔子发布了新的文献求助10
27秒前
涂涂虫发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565868
求助须知:如何正确求助?哪些是违规求助? 4650808
关于积分的说明 14693385
捐赠科研通 4592912
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463329