Hierarchical Online Air Combat Maneuver Decision Making and Control Based on Surrogate-Assisted Differential Evolution Algorithm

差异进化 计算机科学 弹道 替代模型 轨迹优化 最优化问题 差速器(机械装置) 数学优化 控制(管理) 最优控制 控制理论(社会学) 算法 人工智能 工程类 机器学习 数学 物理 航空航天工程 天文
作者
Mulai Tan,Haocheng Sun,Dali Ding,Huan Zhou,Tong Han,Y. Luo
出处
期刊:Drones [MDPI AG]
卷期号:9 (2): 106-106
标识
DOI:10.3390/drones9020106
摘要

One-to-one within-visual-range air combat of unmanned combat aerial vehicles (UCAVs) requires fast, continuous, and accurate decision-making to achieve air combat victory. In order to solve the current problems of insufficient real-time performance of traditional intelligent optimization algorithms for solving decision-making problems and the mismatch between the planning trajectory and the actual flight trajectory caused by the difference between the decision-making model and the actual aircraft model, this paper proposes a hierarchical on-line air combat maneuvering decision-making and control framework. Considering the real-time constraints, the maneuver decision problem is transformed into an expensive optimization problem at the decision planning layer. The surrogate-assisted differential evolution algorithm is proposed on the basis of the original differential evolution algorithm, and the planning trajectory is obtained through the 5 degrees of freedom (DOF) model. In the control execution layer, the planning trajectory is tracked through the nonlinear dynamic inverse tracking control method to realize the high-precision control of the 6DOF model. The simulation is carried out under four different initial situation scenarios, including head-on neutral, dominant, parallel neutral, and disadvantaged situations. The Monte Carlo simulation results show that the Surrogate-assisted differential evolution algorithm (SADE) can achieve a win rate of over 53% in all four initial scenarios. The proposed maneuver decision and control framework in this article achieves smooth flight trajectories and stable aircraft control, with each decision average taking 0.08 s, effectively solving the real-time problem of intelligent optimization algorithms in maneuver decision problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyu完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
王王应助谨慎的寒松采纳,获得30
刚刚
1秒前
1秒前
含糊的依白完成签到,获得积分10
1秒前
小蘑菇应助Susan采纳,获得10
3秒前
耍酷天寿发布了新的文献求助10
4秒前
Owen应助XT采纳,获得10
4秒前
bmyy完成签到,获得积分10
5秒前
5秒前
烟花应助jzt12138采纳,获得10
5秒前
嗯啊完成签到,获得积分10
6秒前
陈陈完成签到,获得积分10
6秒前
6秒前
ZTB完成签到,获得积分10
6秒前
邓佳乐完成签到,获得积分10
6秒前
归于晏发布了新的文献求助10
8秒前
8秒前
9秒前
iNk应助ZTB采纳,获得10
9秒前
10秒前
精灵梦完成签到,获得积分10
10秒前
无花果应助文静的听荷采纳,获得10
11秒前
橙子发布了新的文献求助10
12秒前
Merryonwine完成签到,获得积分10
12秒前
1111发布了新的文献求助10
12秒前
hhl完成签到,获得积分10
12秒前
栀子花的梦完成签到,获得积分20
13秒前
13秒前
小垚完成签到,获得积分10
13秒前
13秒前
回笼觉教主完成签到,获得积分10
14秒前
bz发布了新的文献求助10
14秒前
14秒前
情怀应助孙冲采纳,获得10
14秒前
14秒前
上上上完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735420
求助须知:如何正确求助?哪些是违规求助? 5360561
关于积分的说明 15329871
捐赠科研通 4879609
什么是DOI,文献DOI怎么找? 2622093
邀请新用户注册赠送积分活动 1571250
关于科研通互助平台的介绍 1528108