Highly multiplexed imaging reveals prognostic immune and stromal spatial biomarkers in breast cancer

乳腺癌 间质细胞 免疫系统 医学 癌症 内科学 癌症研究 肿瘤科 免疫学
作者
Jennifer Eng,Elmar Bucher,Zhiwei Hu,Cameron R. Walker,Tyler Risom,Michael Angelo,Paula I. González-Ericsson,Melinda E. Sanders,A. Bapsi Chakravarthy,Jennifer A. Pietenpol,Summer L. Gibbs,Rosalie C. Sears,Koei Chin
出处
期刊:JCI insight [American Society for Clinical Investigation]
标识
DOI:10.1172/jci.insight.176749
摘要

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and generate prognostic and predictive biomarkers. We analyzed single-cell, spatial data from three multiplex imaging technologies: cyclic immunofluorescence (CycIF) data we generated from 102 breast cancer patients with clinical follow-up, and publicly available imaging mass cytometry and multiplex ion-beam imaging datasets. Similar single-cell phenotyping results across imaging platforms enabled combined analysis of epithelial phenotypes to delineate prognostic subtypes among estrogen-receptor positive (ER+) patients. We utilized discovery and validation cohorts to identify biomarkers with prognostic value. Increased lymphocyte infiltration was independently associated with longer survival in triple-negative (TN) and high-proliferation ER+ breast tumors. An assessment of ten spatial analysis methods revealed robust spatial biomarkers. In ER+ disease, quiescent stromal cells close to tumor were abundant in good prognosis tumors, while tumor cell neighborhoods containing mixed fibroblast phenotypes were enriched in poor prognosis tumors. In TN disease, macrophage/tumor and B/T lymphocyte neighbors were enriched and lymphocytes were dispersed in good prognosis tumors, while tumor cell neighborhoods containing vimentin-positive fibroblasts were enriched in poor prognosis tumors. In conclusion, we generated comparable single-cell spatial proteomic data from several clinical cohorts to enable prognostic spatial biomarker identification and validation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周少完成签到,获得积分10
刚刚
华理附院孙文博完成签到 ,获得积分10
2秒前
科研通AI2S应助ark861023采纳,获得10
3秒前
zyzttcm关注了科研通微信公众号
4秒前
风之旅人完成签到,获得积分10
4秒前
辇道增七完成签到,获得积分10
6秒前
仰山雪完成签到 ,获得积分10
7秒前
herks完成签到,获得积分20
7秒前
study完成签到,获得积分10
7秒前
8秒前
xiaolianwheat完成签到,获得积分10
8秒前
小白完成签到,获得积分10
10秒前
戚薇完成签到 ,获得积分10
10秒前
破茧发布了新的文献求助10
12秒前
12秒前
13秒前
张渔歌完成签到,获得积分10
13秒前
SC完成签到 ,获得积分10
13秒前
qiqi完成签到,获得积分10
14秒前
samtol完成签到,获得积分10
14秒前
15秒前
宓天问完成签到,获得积分10
15秒前
li发布了新的文献求助20
16秒前
聪慧小燕完成签到,获得积分10
16秒前
悦耳的妙竹完成签到,获得积分10
17秒前
jun完成签到,获得积分10
17秒前
Leslie发布了新的文献求助10
18秒前
一只桃完成签到,获得积分10
18秒前
jw发布了新的文献求助10
18秒前
不亦乐乎完成签到,获得积分10
19秒前
星岛完成签到,获得积分10
20秒前
一只桃发布了新的文献求助10
21秒前
harry2021完成签到,获得积分10
21秒前
余雨梅发布了新的文献求助10
21秒前
wentong完成签到,获得积分10
22秒前
郭馨完成签到,获得积分10
22秒前
活力亦瑶完成签到,获得积分10
23秒前
24秒前
25秒前
学谦完成签到,获得积分10
25秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Pediatric Nurse Telephone Triage 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350177
求助须知:如何正确求助?哪些是违规求助? 2975970
关于积分的说明 8672368
捐赠科研通 2657031
什么是DOI,文献DOI怎么找? 1454863
科研通“疑难数据库(出版商)”最低求助积分说明 673534
邀请新用户注册赠送积分活动 664017