Highly multiplexed imaging reveals prognostic immune and stromal spatial biomarkers in breast cancer

乳腺癌 间质细胞 免疫系统 医学 癌症 内科学 癌症研究 肿瘤科 免疫学
作者
Jennifer Eng,Elmar Bucher,Zhiwei Hu,Cameron R. Walker,Tyler Risom,Michael Angelo,Paula I. González-Ericsson,Melinda E. Sanders,A. Bapsi Chakravarthy,Jennifer A. Pietenpol,Summer L. Gibbs,Rosalie C. Sears,Koei Chin
出处
期刊:JCI insight [American Society for Clinical Investigation]
标识
DOI:10.1172/jci.insight.176749
摘要

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and generate prognostic and predictive biomarkers. We analyzed single-cell, spatial data from three multiplex imaging technologies: cyclic immunofluorescence (CycIF) data we generated from 102 breast cancer patients with clinical follow-up, and publicly available imaging mass cytometry and multiplex ion-beam imaging datasets. Similar single-cell phenotyping results across imaging platforms enabled combined analysis of epithelial phenotypes to delineate prognostic subtypes among estrogen-receptor positive (ER+) patients. We utilized discovery and validation cohorts to identify biomarkers with prognostic value. Increased lymphocyte infiltration was independently associated with longer survival in triple-negative (TN) and high-proliferation ER+ breast tumors. An assessment of ten spatial analysis methods revealed robust spatial biomarkers. In ER+ disease, quiescent stromal cells close to tumor were abundant in good prognosis tumors, while tumor cell neighborhoods containing mixed fibroblast phenotypes were enriched in poor prognosis tumors. In TN disease, macrophage/tumor and B/T lymphocyte neighbors were enriched and lymphocytes were dispersed in good prognosis tumors, while tumor cell neighborhoods containing vimentin-positive fibroblasts were enriched in poor prognosis tumors. In conclusion, we generated comparable single-cell spatial proteomic data from several clinical cohorts to enable prognostic spatial biomarker identification and validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆dou发布了新的文献求助10
2秒前
旭日东升完成签到 ,获得积分10
3秒前
yyyyou完成签到,获得积分10
4秒前
科研通AI5应助xlj采纳,获得10
6秒前
Jenny应助WZ0904采纳,获得10
6秒前
弘一完成签到,获得积分10
6秒前
郑zhenglanyou完成签到 ,获得积分10
7秒前
9秒前
忧子忘完成签到,获得积分10
9秒前
10秒前
foreverchoi完成签到,获得积分10
10秒前
HH完成签到,获得积分20
10秒前
11秒前
whm完成签到,获得积分10
11秒前
13秒前
邬傥完成签到,获得积分10
14秒前
tomato应助执着采纳,获得20
15秒前
大方嵩发布了新的文献求助10
15秒前
梓ccc完成签到,获得积分10
15秒前
15秒前
求助发布了新的文献求助10
16秒前
风雨1210发布了新的文献求助10
16秒前
16秒前
17秒前
小梁要加油完成签到,获得积分20
17秒前
Alpha发布了新的文献求助10
18秒前
刘鹏宇发布了新的文献求助10
19秒前
zhangscience完成签到,获得积分10
19秒前
可爱的函函应助若狂采纳,获得10
20秒前
小蘑菇应助阿美采纳,获得30
20秒前
科研通AI2S应助机智小虾米采纳,获得10
21秒前
充电宝应助Xx.采纳,获得10
22秒前
zhangscience发布了新的文献求助10
23秒前
深情安青应助大方嵩采纳,获得10
24秒前
英俊的铭应助大方嵩采纳,获得10
24秒前
李还好完成签到,获得积分10
25秒前
满意的柏柳完成签到,获得积分10
26秒前
27秒前
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808