Highly multiplexed imaging reveals prognostic immune and stromal spatial biomarkers in breast cancer

乳腺癌 间质细胞 免疫系统 医学 癌症 内科学 癌症研究 肿瘤科 免疫学
作者
Jennifer Eng,Elmar Bucher,Zhiwei Hu,Cameron R. Walker,Tyler Risom,Michael Angelo,Paula I. González-Ericsson,Melinda E. Sanders,A. Bapsi Chakravarthy,Jennifer A. Pietenpol,Summer L. Gibbs,Rosalie C. Sears,Koei Chin
出处
期刊:JCI insight [American Society for Clinical Investigation]
被引量:4
标识
DOI:10.1172/jci.insight.176749
摘要

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and generate prognostic and predictive biomarkers. We analyzed single-cell, spatial data from three multiplex imaging technologies: cyclic immunofluorescence (CycIF) data we generated from 102 breast cancer patients with clinical follow-up, and publicly available imaging mass cytometry and multiplex ion-beam imaging datasets. Similar single-cell phenotyping results across imaging platforms enabled combined analysis of epithelial phenotypes to delineate prognostic subtypes among estrogen-receptor positive (ER+) patients. We utilized discovery and validation cohorts to identify biomarkers with prognostic value. Increased lymphocyte infiltration was independently associated with longer survival in triple-negative (TN) and high-proliferation ER+ breast tumors. An assessment of ten spatial analysis methods revealed robust spatial biomarkers. In ER+ disease, quiescent stromal cells close to tumor were abundant in good prognosis tumors, while tumor cell neighborhoods containing mixed fibroblast phenotypes were enriched in poor prognosis tumors. In TN disease, macrophage/tumor and B/T lymphocyte neighbors were enriched and lymphocytes were dispersed in good prognosis tumors, while tumor cell neighborhoods containing vimentin-positive fibroblasts were enriched in poor prognosis tumors. In conclusion, we generated comparable single-cell spatial proteomic data from several clinical cohorts to enable prognostic spatial biomarker identification and validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
美琪完成签到,获得积分10
2秒前
英俊的铭应助02采纳,获得10
4秒前
4秒前
范书豪发布了新的文献求助10
5秒前
6秒前
美琪发布了新的文献求助10
6秒前
今后应助夏木采纳,获得10
7秒前
熊佳璇完成签到,获得积分10
7秒前
喜悦的清炎完成签到 ,获得积分10
7秒前
獾huan完成签到,获得积分10
9秒前
yue发布了新的文献求助10
10秒前
10秒前
10秒前
整齐的芯完成签到,获得积分10
10秒前
liushuo完成签到,获得积分20
10秒前
TT关闭了TT文献求助
10秒前
爱笑的访梦完成签到,获得积分10
11秒前
lll完成签到,获得积分10
12秒前
小黑发布了新的文献求助10
13秒前
liushuo发布了新的文献求助10
13秒前
喜悦的清炎关注了科研通微信公众号
13秒前
14秒前
海棠完成签到,获得积分10
14秒前
发疯大侠完成签到,获得积分10
14秒前
HJJHJH发布了新的文献求助10
14秒前
李健应助Usin采纳,获得10
15秒前
17秒前
虚幻大象完成签到,获得积分20
17秒前
白夜完成签到 ,获得积分10
18秒前
MoonByMoon发布了新的文献求助30
20秒前
20秒前
21秒前
22秒前
22秒前
Apei驳回了852应助
22秒前
23秒前
大气的fgyyhjj完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913