Research on Personalized Design and Recommendation Systems for Cultural and Creative Products Based on User Behavior Data

人机交互 计算机科学 工程类 知识管理
作者
Jingyu Tang,Yang Zhang
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425402682
摘要

Personalized recommendation technology involves the process of soliciting user data and prescribing a user interest model and active recommendations for some users. Such kinds of creative products involve subjective judgments and intricate patterns in the aesthetics, and it is always difficult to encode algorithms that are capable of understanding and recommending these subjective aspects. In this paper, the beetle swarm optimization algorithm is incorporated into a refined deep neural network model called the beetle swarm-drive refined deep neural network (BS-RDNN) for the analysis of personalized design and recommendation systems for user behaviors. Information about user behavior and feedback was collected as part of this study. The data were preprocessed using Min-Max normalization. t-distributed stochastic neighbor embedding (t-SNE) is employed to reduce the dataset dimensions. The proposed method is discussed with other types of recommendation algorithms. The proposed method is implemented with the aid of Python software. This result proves that the BS-RDNN method has better performance in terms of precision (91.34%), accuracy (93.24%), F1-score (92.23%), recall (92.44%), AUC (91.42%), and overall satisfaction of the users. Therefore, the use of the suggested system to coordinate with the design ideas of different individuals can benefit the field of cultural and creative products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lizhen完成签到,获得积分10
1秒前
Angus发布了新的文献求助20
1秒前
大个应助江伊采纳,获得10
1秒前
小小柴完成签到,获得积分10
2秒前
鳗鱼没发布了新的文献求助10
2秒前
2秒前
mm完成签到,获得积分10
2秒前
3秒前
糖淘淘完成签到,获得积分10
3秒前
小任吃不胖完成签到,获得积分10
3秒前
SKX发布了新的文献求助10
4秒前
谨慎的雁桃完成签到,获得积分10
5秒前
6秒前
Margaret完成签到 ,获得积分10
6秒前
ajiduo发布了新的文献求助10
7秒前
8秒前
9秒前
yhl发布了新的文献求助10
10秒前
卿久久完成签到,获得积分10
11秒前
NexusExplorer应助桃子采纳,获得10
11秒前
JamesPei应助英勇的香芦采纳,获得10
12秒前
x-yun宝发布了新的文献求助10
15秒前
Gj完成签到,获得积分10
15秒前
和谐书瑶完成签到,获得积分20
16秒前
yhl完成签到,获得积分20
16秒前
大个应助冷傲的靖易采纳,获得10
17秒前
hsyh发布了新的文献求助30
18秒前
18秒前
19秒前
SKX完成签到,获得积分20
20秒前
科研通AI5应助单纯的手机采纳,获得10
20秒前
科研通AI5应助洪伟采纳,获得10
20秒前
王圆发布了新的文献求助10
22秒前
22秒前
虚幻盼晴完成签到,获得积分10
23秒前
23秒前
平常的毛豆应助Binbin采纳,获得10
24秒前
25秒前
李爱国应助Angus采纳,获得10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842012
求助须知:如何正确求助?哪些是违规求助? 3384135
关于积分的说明 10532872
捐赠科研通 3104461
什么是DOI,文献DOI怎么找? 1709640
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953