Determining Covalent Organic Framework Structures Using Electron Crystallography and Computational Intelligence

化学 共价键 计算化学 化学物理 有机化学
作者
Xiangyu Zhang,Junyi Hu,Huiyu Liu,Tu Sun,Zidi Wang,Yingbo Zhao,Yue‐Biao Zhang,Ping Huai,Yanhang Ma,Shan Jiang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c12757
摘要

The structural characterization of new materials often poses immense challenges, especially when obtaining single-crystal structures is difficult, which is a common difficulty with covalent organic frameworks (COFs). Despite this, understanding the atomic structure is crucial as it provides insights into the arrangement and connectivity of organic building blocks, offering the opportunity to establish the correlation of structure–function relationships and unravel material properties. In this study, we present an approach for determining the structures of COFs, an integration of electron crystallography and computational intelligence (COF+). By applying established chemistry knowledge and employing particle swarm optimization (PSO) for trial structure generation, we overcome existing limitations, thus paving the way for advancements in COF structural determination. We have successfully implemented this technique on four representative COFs, each with unique characteristics. These examples underline the accuracy and efficacy of our approach in addressing the challenges tied to COF structural determination. Furthermore, our approach has revealed new structure candidates with different topologies or interpenetrations that are chemically feasible. This discovery demonstrates the capability of our algorithm in constructing trial COF structures without being influenced by topological factors. Our new approach to COF structure determination represents a significant advancement in the field and opens new avenues for exploring the properties and applications of COF materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是赤赤呀完成签到,获得积分10
刚刚
阮人雄完成签到,获得积分10
刚刚
王饱饱完成签到 ,获得积分10
刚刚
Mr_Hao完成签到,获得积分10
1秒前
Keira_Chang完成签到,获得积分10
1秒前
起承转合完成签到 ,获得积分10
1秒前
风姿物语完成签到,获得积分10
2秒前
xiaopeng完成签到,获得积分10
2秒前
Jenny应助艺玲采纳,获得10
3秒前
一平发布了新的文献求助80
3秒前
樱桃味的火苗完成签到,获得积分10
3秒前
3秒前
波波完成签到,获得积分10
4秒前
322628完成签到,获得积分10
4秒前
领导范儿应助silong采纳,获得10
4秒前
身为风帆发布了新的文献求助10
4秒前
applepie完成签到,获得积分10
4秒前
顾己完成签到,获得积分10
4秒前
宋嬴一完成签到,获得积分10
4秒前
4秒前
我超爱cs完成签到,获得积分10
5秒前
沉静哲瀚完成签到,获得积分10
5秒前
MADKAI发布了新的文献求助10
6秒前
喝汤一样完成签到,获得积分10
6秒前
6秒前
6秒前
wormzjl发布了新的文献求助10
6秒前
虚拟的眼神完成签到,获得积分10
8秒前
陈_Ccc完成签到 ,获得积分10
8秒前
文静达完成签到,获得积分10
8秒前
rui发布了新的文献求助30
8秒前
CC发布了新的文献求助10
8秒前
8秒前
兴奋的果汁完成签到,获得积分10
9秒前
9秒前
9秒前
浮三白完成签到,获得积分10
9秒前
爆米花应助沉静的夜玉采纳,获得10
10秒前
aodilee完成签到,获得积分10
10秒前
思源应助非常可爱采纳,获得20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672