已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

(Invited) Development of High-Efficiency Transparent Cu2O Top Cells for Tandem Photovoltaics with Efficiency Exceeding 30%

串联 光伏 材料科学 光电子学 工程物理 纳米技术 光伏系统 电气工程 物理 工程类 复合材料
作者
Naoyuki Nakagawa,Yuya Honishi,Soichiro Shibasaki,Yukitami Mizuno,Takashi Yamamoto,Atsushi Wada,Sara Yoshio,Motohiro Toyota,Kazumasa Wakamatsu,Junji Sano,Kanta Sugimoto,Kazushige Yamamoto
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (19): 1747-1747
标识
DOI:10.1149/ma2024-02191747mtgabs
摘要

Solar cells with high power generation efficiency are expected to be used in mobility applications that require high power output in a limited footprint, such as electric vehicles (EVs) and high-altitude platform stations (HAPS), as well as in current products for housing and industrial applications. A tandem structure is an effective option for high-efficiency solar cells, and various combinations of solar cells have been proposed as the top and bottom cells, including InGaP/GaAs and perovskite/Si. Our proposed tandem solar cell consists of a transparent cuprous oxide (Cu 2 O) top cell and a crystalline Si bottom cell and is a promising candidate for the next generation of tandem solar cells because of its combination of high efficiency and low cost. High tandem efficiency of 30% or higher is required for various advanced applications such as mobility. Cu 2 O has a wide bandgap of 2.1 eV, and its spectral sensitivity complements that of crystalline Si, so high bottom-cell efficiency can be achieved. By using Cu 2 O in the top cell, the Si bottom cell can be expected to have an efficiency of 20% due to long-wavelength light transmitted through Cu 2 O, and by generating an efficiency of 10% in the Cu 2 O top cell, a tandem efficiency exceeding 30% is within sight. Cu 2 O is a low-cost material because it consists of the abundant elements copper and oxygen. Also, it can be formed on inexpensive glass substrates by low-cost manufacturing processes such as sputtering. We have established a technology to deposit high-quality Cu 2 O thin films as a single phase on transparent electrodes by reactive sputtering. By precisely adjusting the oxygen gas flow rate and substrate temperature, Cu and CuO present as different phases could be removed and a metastable Cu 2 O phase selectively deposited. A top cell using this low-defect Cu 2 O as the optical absorption layer has achieved an efficiency of 8.4% [1]. In this paper, we report on a Cu 2 O top cell that exhibits the world's highest efficiency of 10.5%, which was achieved by improving the short-circuit current density (J sc ) and the open-circuit voltage (V oc ). By increasing the size of the Cu 2 O top cell by a factor of about 3, the area ratio of the dead area at the cell edge to the power-generating area was reduced. We expect that our Cu 2 O film has a long carrier diffusion length, and thus when the cell area is small, many carriers diffuse to the cell edge face and recombine. By contrast, a larger cell area increases the number of carriers that can contribute to power generation without carriers reaching the cell edge face. Device simulations showed that there were many interfacial defects between p-type Cu 2 O and n-type Ga 2 O 3 , which reduced V oc . Therefore, a unique passivation layer was introduced at the pn interface. This suppressed the interfacial defects and increased V oc by about 0.1 V compared with the conventional cell. The measured efficiency of 10.5% for the Cu 2 O top cell exceeds our milestone target of 10% for top-cell efficiency, which is required to achieve tandem efficiency of 30%. This work is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO). [1] S. Shibasaki, Y. Honishi, N. Nakagawa, M. Yamazaki, Y. Mizuno, Y. Nishida, K. Sugimoto, and K. Yamamoto, "Highly transparent Cu2O absorbing layer for thin film solar cells," Appl. Phys. Lett. 119 , 242102 (2021).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助zzz采纳,获得10
8秒前
不知道是谁完成签到,获得积分10
9秒前
10秒前
自由的无色完成签到 ,获得积分10
10秒前
bb完成签到,获得积分10
13秒前
17秒前
执着访文发布了新的文献求助10
18秒前
王宇轲完成签到,获得积分10
19秒前
iDong完成签到 ,获得积分10
19秒前
李爱国应助zw采纳,获得10
22秒前
GFT发布了新的文献求助10
26秒前
28秒前
执着访文完成签到,获得积分10
30秒前
glacier完成签到,获得积分10
30秒前
英勇的依秋完成签到,获得积分10
34秒前
亚吉完成签到 ,获得积分10
34秒前
乌冬完成签到,获得积分10
35秒前
康康小白杨完成签到 ,获得积分10
37秒前
余周周完成签到,获得积分10
39秒前
黄3完成签到 ,获得积分10
41秒前
sayshh完成签到 ,获得积分10
43秒前
大模型应助科研通管家采纳,获得10
49秒前
英姑应助科研通管家采纳,获得10
49秒前
脑洞疼应助科研通管家采纳,获得10
49秒前
星辰大海应助科研通管家采纳,获得10
49秒前
49秒前
49秒前
luocan完成签到,获得积分10
50秒前
Ava应助东门吹雪采纳,获得10
50秒前
zzz发布了新的文献求助10
54秒前
55秒前
慵懒完成签到,获得积分10
58秒前
1分钟前
Wxxxxx完成签到 ,获得积分10
1分钟前
Oay发布了新的文献求助10
1分钟前
WGR12138完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
英俊绫完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4909554
求助须知:如何正确求助?哪些是违规求助? 4185866
关于积分的说明 12998542
捐赠科研通 3952896
什么是DOI,文献DOI怎么找? 2167698
邀请新用户注册赠送积分活动 1186181
关于科研通互助平台的介绍 1092971