(Invited) Development of High-Efficiency Transparent Cu2O Top Cells for Tandem Photovoltaics with Efficiency Exceeding 30%

串联 光伏 材料科学 光电子学 工程物理 纳米技术 光伏系统 电气工程 物理 工程类 复合材料
作者
Naoyuki Nakagawa,Yuya Honishi,Soichiro Shibasaki,Yukitami Mizuno,Takashi Yamamoto,Atsushi Wada,Sara Yoshio,Motohiro Toyota,Kazumasa Wakamatsu,Junji Sano,Kanta Sugimoto,Kazushige Yamamoto
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (19): 1747-1747
标识
DOI:10.1149/ma2024-02191747mtgabs
摘要

Solar cells with high power generation efficiency are expected to be used in mobility applications that require high power output in a limited footprint, such as electric vehicles (EVs) and high-altitude platform stations (HAPS), as well as in current products for housing and industrial applications. A tandem structure is an effective option for high-efficiency solar cells, and various combinations of solar cells have been proposed as the top and bottom cells, including InGaP/GaAs and perovskite/Si. Our proposed tandem solar cell consists of a transparent cuprous oxide (Cu 2 O) top cell and a crystalline Si bottom cell and is a promising candidate for the next generation of tandem solar cells because of its combination of high efficiency and low cost. High tandem efficiency of 30% or higher is required for various advanced applications such as mobility. Cu 2 O has a wide bandgap of 2.1 eV, and its spectral sensitivity complements that of crystalline Si, so high bottom-cell efficiency can be achieved. By using Cu 2 O in the top cell, the Si bottom cell can be expected to have an efficiency of 20% due to long-wavelength light transmitted through Cu 2 O, and by generating an efficiency of 10% in the Cu 2 O top cell, a tandem efficiency exceeding 30% is within sight. Cu 2 O is a low-cost material because it consists of the abundant elements copper and oxygen. Also, it can be formed on inexpensive glass substrates by low-cost manufacturing processes such as sputtering. We have established a technology to deposit high-quality Cu 2 O thin films as a single phase on transparent electrodes by reactive sputtering. By precisely adjusting the oxygen gas flow rate and substrate temperature, Cu and CuO present as different phases could be removed and a metastable Cu 2 O phase selectively deposited. A top cell using this low-defect Cu 2 O as the optical absorption layer has achieved an efficiency of 8.4% [1]. In this paper, we report on a Cu 2 O top cell that exhibits the world's highest efficiency of 10.5%, which was achieved by improving the short-circuit current density (J sc ) and the open-circuit voltage (V oc ). By increasing the size of the Cu 2 O top cell by a factor of about 3, the area ratio of the dead area at the cell edge to the power-generating area was reduced. We expect that our Cu 2 O film has a long carrier diffusion length, and thus when the cell area is small, many carriers diffuse to the cell edge face and recombine. By contrast, a larger cell area increases the number of carriers that can contribute to power generation without carriers reaching the cell edge face. Device simulations showed that there were many interfacial defects between p-type Cu 2 O and n-type Ga 2 O 3 , which reduced V oc . Therefore, a unique passivation layer was introduced at the pn interface. This suppressed the interfacial defects and increased V oc by about 0.1 V compared with the conventional cell. The measured efficiency of 10.5% for the Cu 2 O top cell exceeds our milestone target of 10% for top-cell efficiency, which is required to achieve tandem efficiency of 30%. This work is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO). [1] S. Shibasaki, Y. Honishi, N. Nakagawa, M. Yamazaki, Y. Mizuno, Y. Nishida, K. Sugimoto, and K. Yamamoto, "Highly transparent Cu2O absorbing layer for thin film solar cells," Appl. Phys. Lett. 119 , 242102 (2021).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助HJJHJH采纳,获得20
1秒前
专注的水壶完成签到 ,获得积分10
3秒前
Bob完成签到 ,获得积分10
3秒前
phy完成签到,获得积分10
3秒前
7秒前
7秒前
LX77bx完成签到,获得积分10
9秒前
外向的醉易完成签到,获得积分10
10秒前
SharonDu完成签到 ,获得积分10
11秒前
12秒前
yuncong323完成签到,获得积分10
13秒前
huohuo完成签到,获得积分10
15秒前
CB完成签到,获得积分10
16秒前
16秒前
17秒前
儒雅路人完成签到,获得积分10
18秒前
OLDBLOW完成签到,获得积分10
19秒前
19秒前
liupangzi完成签到,获得积分10
19秒前
wang完成签到,获得积分10
19秒前
20秒前
Catherkk发布了新的文献求助10
20秒前
lcdamoy完成签到,获得积分10
21秒前
钱浩然发布了新的文献求助10
21秒前
烊烊发布了新的文献求助10
22秒前
十曰完成签到,获得积分10
27秒前
jjjjchou完成签到,获得积分10
28秒前
虚心的不二完成签到 ,获得积分10
30秒前
xuzj应助科研通管家采纳,获得10
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
31秒前
思源应助科研通管家采纳,获得10
31秒前
31秒前
研友_VZG7GZ应助科研通管家采纳,获得10
31秒前
fang应助科研通管家采纳,获得10
31秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
shiizii应助科研通管家采纳,获得10
31秒前
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022