Identification of Multiple Foodborne Pathogens Using Single-Atom Nanozyme Colorimetric Sensor Arrays and Machine Learning

鉴定(生物学) 计算机科学 计算生物学 人工智能 生物 植物
作者
Ying Li,Feng Chen,Muhammad Arif Khan,Hongbin Zhao,Hongmei Cao,Daixin Ye
标识
DOI:10.2139/ssrn.5093686
摘要

Food-borne pathogens in food are a major hidden danger to human health. Rapid and accurate detection of food-borne pathogens is of great significance to people's food safety. However, current techniques are generally time-consuming and require large-scale equipment. Herein, a colorimetric sensor array combined with machine learning-assisted detection technology was developed, which can simultaneously and rapidly detect multiple foodborne pathogens. Firstly, Fe-N-C single-atom nanozymes (SAzymes) with high peroxidase-like activity were synthesized. The Fe-N-C SAzymes with strong signal amplification can specifically catalyze three kinds of chromogenic substrates, the colorless TMB, OPD and light green ABTS into blue oxidized TMBox, yellow oxidized OPDox, and green ABTSox, respectively. The different foodborne pathogens have different inhibitory effects on the active sites of Fe-C-N SAzyme, generating different colorimetric response signals according to three chromogenic substrates. The key aspect is that, through machine learning, colorimetric response signals were developed as unique fingerprints for various foodborne pathogens, enabling effective differentiation between them.The colorimetric sensor array based on SAzymes overcomes the limitations of traditional "lock−key mode" biosensors and achieves highly sensitive identification of multiple foodborne pathogens in the range from 105 to 108 CFU/ml. Furthermore, the constructed colorimetric sensor array assisted by machine learning shows good recognition performance in the detection of actual samples such as seawater, lake water and tap water, and can achieve simultaneous detection of five kinds of foodborne pathogens, indicating great potential for the rapid, precise and high-throughput identification of foodborne pathogens in the field of food safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eason应助sunaijia采纳,获得10
刚刚
LXx完成签到 ,获得积分10
刚刚
逆流的鱼完成签到 ,获得积分10
1秒前
1秒前
漠mo完成签到 ,获得积分10
3秒前
加油少年完成签到,获得积分10
4秒前
wjw发布了新的文献求助10
6秒前
南瓜pcn完成签到,获得积分10
6秒前
6秒前
小夭发布了新的文献求助10
7秒前
pe完成签到,获得积分10
10秒前
NI伦Ge发布了新的文献求助10
11秒前
咔什么嚓完成签到,获得积分10
16秒前
寂寞的梦安完成签到 ,获得积分10
17秒前
畅快的谷秋完成签到 ,获得积分10
17秒前
liushuang完成签到 ,获得积分10
19秒前
科目三应助可靠的无血采纳,获得10
23秒前
坚强的芙完成签到 ,获得积分10
26秒前
PPP完成签到,获得积分10
26秒前
27秒前
田所浩二完成签到 ,获得积分10
27秒前
pluto应助NI伦Ge采纳,获得10
27秒前
32秒前
小夭完成签到,获得积分10
33秒前
llly完成签到,获得积分10
35秒前
kkuula发布了新的文献求助10
36秒前
wanci应助医路潜行采纳,获得10
36秒前
韩寒完成签到 ,获得积分10
37秒前
echo完成签到 ,获得积分10
37秒前
夏沫完成签到,获得积分10
38秒前
勤奋雨完成签到,获得积分10
38秒前
彩色大碗完成签到,获得积分10
44秒前
庄怀逸完成签到 ,获得积分10
46秒前
scarlett完成签到,获得积分10
46秒前
亦玉完成签到,获得积分10
46秒前
东东呀完成签到,获得积分10
47秒前
kkuula完成签到,获得积分10
48秒前
饱满的大碗完成签到 ,获得积分10
48秒前
CC完成签到 ,获得积分10
48秒前
Ww完成签到,获得积分10
49秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571428
求助须知:如何正确求助?哪些是违规求助? 3141983
关于积分的说明 9445184
捐赠科研通 2843436
什么是DOI,文献DOI怎么找? 1562857
邀请新用户注册赠送积分活动 731366
科研通“疑难数据库(出版商)”最低求助积分说明 718524