Universal Fine-grained Visual Categorization by Concept Guided Learning

分类 计算机科学 人工智能 自然语言处理 计算机视觉 机器学习 模式识别(心理学)
作者
Qi Bi,Beichen Zhou,Wei Ji,Gui-Song Xia
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3523802
摘要

Existing fine-grained visual categorization (FGVC) methods assume that the fine-grained semantics rest in the informative parts of an image. This assumption works well on favorable front-view object-centric images, but can face great challenges in many real-world scenarios, such as scene-centric images ( e.g. , street view) and adverse viewpoint ( e.g. , object reidentification, remote sensing). In such scenarios, the mis-/over-feature activation is likely to confuse the part selection and degrade the fine-grained representation. In this paper, we are motivated to design a universal FGVC framework for real-world scenarios. More precisely, we propose a concept guided learning (CGL), which models concepts of a certain fine-grained category as a combination of inherited concepts from its subordinate coarse-grained category and discriminative concepts from its own. The discriminative concepts is utilized to guide the fine-grained representation learning. Specifically, three key steps are designed, namely, concept mining, concept fusion, and concept constraint. On the other hand, to bridge the FGVC dataset gap under scene-centric and adverse viewpoint scenarios, a Fine-grained Land-cover Categorization Dataset (FGLCD) with 59,994 fine-grained samples is proposed. Extensive experiments show the proposed CGL: 1) has a competitive performance on conventional FGVC; 2) achieves state-of-the-art performance on fine-grained aerial scenes & scene-centric street scenes; 3) good generalization on object re-identification and fine-grained aerial object detection. The dataset and source code will be available at https://github.com/BiQiWHU/CGL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳发布了新的文献求助10
1秒前
1秒前
荣枫完成签到,获得积分10
3秒前
充电宝应助tqs采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
bkagyin应助梦璃采纳,获得10
7秒前
结实星星发布了新的文献求助50
7秒前
上官若男应助ZLQ2023采纳,获得10
8秒前
凡凡好运发布了新的文献求助20
8秒前
13秒前
爆米花应助zzxuan采纳,获得20
14秒前
15秒前
白白完成签到,获得积分10
15秒前
segama发布了新的文献求助30
20秒前
梦璃发布了新的文献求助10
20秒前
21秒前
lqllll发布了新的文献求助10
23秒前
科研通AI2S应助zyyyy采纳,获得10
25秒前
FashionBoy应助zyyyy采纳,获得10
25秒前
25秒前
sunshine发布了新的文献求助10
25秒前
秋程发布了新的文献求助10
26秒前
柯燕婷发布了新的文献求助10
31秒前
sunshine完成签到,获得积分10
33秒前
36秒前
香蕉觅云应助跋扈采纳,获得10
38秒前
俭朴的跳跳糖完成签到 ,获得积分10
42秒前
42秒前
科科科科呃完成签到,获得积分20
43秒前
43秒前
45秒前
开心绿柳完成签到,获得积分10
45秒前
46秒前
46秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Discourse, Identities and Genres in Corporate Communication 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359740
求助须知:如何正确求助?哪些是违规求助? 2982407
关于积分的说明 8703583
捐赠科研通 2664088
什么是DOI,文献DOI怎么找? 1458822
科研通“疑难数据库(出版商)”最低求助积分说明 675293
邀请新用户注册赠送积分活动 666390