已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Universal Fine-grained Visual Categorization by Concept Guided Learning

分类 计算机科学 判别式 代表(政治) 人工智能 可视化 自然语言处理 对象(语法) 情报检索 政治 政治学 法学
作者
Qi Bi,Beichen Zhou,Wei Ji,Gui-Song Xia
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 394-409 被引量:5
标识
DOI:10.1109/tip.2024.3523802
摘要

Existing fine-grained visual categorization (FGVC) methods assume that the fine-grained semantics rest in the informative parts of an image. This assumption works well on favorable front-view object-centric images, but can face great challenges in many real-world scenarios, such as scene-centric images ( e.g. , street view) and adverse viewpoint ( e.g. , object reidentification, remote sensing). In such scenarios, the mis-/over-feature activation is likely to confuse the part selection and degrade the fine-grained representation. In this paper, we are motivated to design a universal FGVC framework for real-world scenarios. More precisely, we propose a concept guided learning (CGL), which models concepts of a certain fine-grained category as a combination of inherited concepts from its subordinate coarse-grained category and discriminative concepts from its own. The discriminative concepts is utilized to guide the fine-grained representation learning. Specifically, three key steps are designed, namely, concept mining, concept fusion, and concept constraint. On the other hand, to bridge the FGVC dataset gap under scene-centric and adverse viewpoint scenarios, a Fine-grained Land-cover Categorization Dataset (FGLCD) with 59,994 fine-grained samples is proposed. Extensive experiments show the proposed CGL: 1) has a competitive performance on conventional FGVC; 2) achieves state-of-the-art performance on fine-grained aerial scenes & scene-centric street scenes; 3) good generalization on object re-identification and fine-grained aerial object detection. The dataset and source code will be available at https://github.com/BiQiWHU/CGL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明钟达完成签到,获得积分10
5秒前
传奇3应助科研通管家采纳,获得10
6秒前
qwwhu应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
Angenstern完成签到 ,获得积分10
8秒前
14秒前
15秒前
Maryamgvl完成签到 ,获得积分10
16秒前
Criminology34应助qyn1234566采纳,获得80
18秒前
科研通AI6应助liaofang采纳,获得10
19秒前
19秒前
20秒前
AM发布了新的文献求助10
20秒前
21秒前
21秒前
zbol发布了新的文献求助10
21秒前
平淡钧发布了新的文献求助10
24秒前
孙东玥发布了新的文献求助10
24秒前
25秒前
小蘑菇应助maomao201026采纳,获得10
25秒前
兴奋雁蓉完成签到,获得积分10
26秒前
淮安石河子完成签到 ,获得积分10
27秒前
艳阳天完成签到 ,获得积分10
29秒前
鬼笔环肽完成签到 ,获得积分10
29秒前
32秒前
SciGPT应助无私的梦凡采纳,获得10
32秒前
也有发布了新的文献求助10
38秒前
zbol完成签到,获得积分10
38秒前
40秒前
h0jian09完成签到,获得积分10
41秒前
yncjdxyjs发布了新的文献求助10
45秒前
superfatcat完成签到,获得积分10
45秒前
dzh完成签到,获得积分20
46秒前
孙东玥完成签到,获得积分10
47秒前
饱满的映天完成签到,获得积分10
48秒前
标致白晴发布了新的文献求助30
49秒前
斯寜完成签到,获得积分0
49秒前
52秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197833
求助须知:如何正确求助?哪些是违规求助? 4379025
关于积分的说明 13637476
捐赠科研通 4234845
什么是DOI,文献DOI怎么找? 2323025
邀请新用户注册赠送积分活动 1321090
关于科研通互助平台的介绍 1271903