Decoding Radiomics: A Step-by-Step Guide to Machine Learning Workflow in Hand-Crafted and Deep Learning Radiomics Studies

无线电技术 工作流程 计算机科学 人工智能 机器学习 数据库
作者
Maurizio Cè,Marius Dumitru Chiriac,Andrea Cozzi,Laura Macrì,Francesca Lucrezia Rabaiotti,Giovanni Irmici,Deborah Fazzini,Gianpaolo Carrafiello,Michaela Cellina
出处
期刊:Diagnostics [MDPI AG]
卷期号:14 (22): 2473-2473
标识
DOI:10.3390/diagnostics14222473
摘要

Although radiomics research has experienced rapid growth in recent years, with numerous studies dedicated to the automated extraction of diagnostic and prognostic information from various imaging modalities, such as CT, PET, and MRI, only a small fraction of these findings has successfully transitioned into clinical practice. This gap is primarily due to the significant methodological challenges involved in radiomics research, which emphasize the need for a rigorous evaluation of study quality. While many technical aspects may lie outside the expertise of most radiologists, having a foundational knowledge is essential for evaluating the quality of radiomics workflows and contributing, together with data scientists, to the development of models with a real-world clinical impact. This review is designed for the new generation of radiologists, who may not have specialized training in machine learning or radiomics, but will inevitably play a role in this evolving field. The paper has two primary objectives: first, to provide a clear, systematic guide to radiomics study pipeline, including study design, image preprocessing, feature selection, model training and validation, and performance evaluation. Furthermore, given the critical importance of evaluating the robustness of radiomics studies, this review offers a step-by-step guide to the application of the METhodological RadiomICs Score (METRICS, 2024)—a newly proposed tool for assessing the quality of radiomics studies. This roadmap aims to support researchers and reviewers alike, regardless of their machine learning expertise, in utilizing this tool for effective study evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一条蛆完成签到,获得积分10
1秒前
3秒前
书生意气完成签到,获得积分10
3秒前
najibveto应助无私的聪展采纳,获得10
4秒前
好好学习完成签到,获得积分10
4秒前
关关小闲完成签到 ,获得积分10
6秒前
西红柿炒番茄应助风原采纳,获得10
8秒前
12秒前
胡亚兰发布了新的文献求助10
12秒前
动听的蛟凤完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
杨杨杨发布了新的文献求助10
17秒前
温暖幻桃发布了新的文献求助10
18秒前
风起青禾完成签到,获得积分10
20秒前
缓慢若云完成签到,获得积分10
20秒前
爱学习的婷完成签到 ,获得积分10
22秒前
22秒前
龚仕杰完成签到 ,获得积分10
22秒前
云山淡空明完成签到,获得积分10
24秒前
24秒前
wxy发布了新的文献求助30
26秒前
27秒前
27秒前
北木黎发布了新的文献求助10
28秒前
胡亚兰完成签到,获得积分20
29秒前
jagger发布了新的文献求助10
30秒前
小马甲应助糊涂的冰夏采纳,获得10
30秒前
虞翩跹完成签到,获得积分10
32秒前
YTY发布了新的文献求助10
33秒前
1111发布了新的文献求助10
34秒前
37秒前
在水一方应助chichenglin采纳,获得10
37秒前
43秒前
英姑应助奶姜采纳,获得10
43秒前
45秒前
45秒前
可罗雀完成签到,获得积分10
45秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919