Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting

流量(数学) 流量(计算机网络) 计算机科学 空格(标点符号) 时空 运输工程 实时计算 工程类 数学 计算机网络 物理 几何学 量子力学 操作系统
作者
Weilin Ruan,Wenzhuo Wang,Siru Zhong,Wei Chen,Li Liu,Yuxuan Liang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.09251
摘要

Predicting spatio-temporal traffic flow presents significant challenges due to complex interactions between spatial and temporal factors. Existing approaches often address these dimensions in isolation, neglecting their critical interdependencies. In this paper, we introduce the Spatio-Temporal Unitized Model (STUM), a unified framework designed to capture both spatial and temporal dependencies while addressing spatio-temporal heterogeneity through techniques such as distribution alignment and feature fusion. It also ensures both predictive accuracy and computational efficiency. Central to STUM is the Adaptive Spatio-temporal Unitized Cell (ASTUC), which utilizes low-rank matrices to seamlessly store, update, and interact with space, time, as well as their correlations. Our framework is also modular, allowing it to integrate with various spatio-temporal graph neural networks through components such as backbone models, feature extractors, residual fusion blocks, and predictive modules to collectively enhance forecasting outcomes. Experimental results across multiple real-world datasets demonstrate that STUM consistently improves prediction performance with minimal computational cost. These findings are further supported by hyperparameter optimization, pre-training analysis, and result visualization. We provide our source code for reproducibility at https://anonymous.4open.science/r/STUM-E4F0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feng完成签到,获得积分10
1秒前
maomao发布了新的文献求助10
1秒前
leena完成签到,获得积分10
1秒前
1秒前
青衣北风发布了新的文献求助10
2秒前
feng发布了新的文献求助10
2秒前
guygun发布了新的文献求助10
5秒前
小灰灰完成签到,获得积分10
6秒前
6秒前
海鸥海鸥发布了新的文献求助10
7秒前
青衣北风完成签到,获得积分10
7秒前
9秒前
MasterE完成签到,获得积分10
10秒前
我的小伙伴应助feng采纳,获得10
10秒前
善学以致用应助feng采纳,获得10
10秒前
11秒前
11秒前
gaoww发布了新的文献求助10
11秒前
小二发布了新的文献求助10
15秒前
solobang发布了新的文献求助10
16秒前
CodeCraft应助Jocelyn7采纳,获得10
16秒前
秋之月完成签到,获得积分10
16秒前
17秒前
cheche关注了科研通微信公众号
17秒前
18秒前
科研小民工应助kento采纳,获得50
19秒前
完美世界应助小萌采纳,获得10
20秒前
20秒前
gaoww完成签到,获得积分10
20秒前
21秒前
WZ0904发布了新的文献求助10
21秒前
21秒前
lab完成签到 ,获得积分0
21秒前
小蘑菇应助今今采纳,获得10
22秒前
CodeCraft应助秋之月采纳,获得10
22秒前
I1waml完成签到 ,获得积分10
22秒前
22秒前
guygun完成签到,获得积分10
22秒前
zho发布了新的文献求助10
23秒前
独特亦旋发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824