化学
半导体
催化作用
化学物理
曲面(拓扑)
化学工程
光电子学
有机化学
几何学
物理
数学
工程类
作者
Siqin Liu,Kun Dang,Lei Wu,Shuming Bai,Yuchao Zhang,Jincai Zhao
摘要
The sluggish water oxidation reaction (WOR) is considered the kinetic bottleneck of artificial photosynthesis due to the complicated four-electron and four-proton transfer process. Herein, we find that the WOR can be kinetically nearly barrierless on four representative photoanodes (i.e., α-Fe2O3, TiO2, WO3, and BiVO4) under concentrated light irradiation, wherein the rate-limiting O-O bond formation step is driven by accumulated surface photogenerated holes that exhibit a superior fourth-order kinetics. The activation energy is about 0.03 eV for the fourth-order kinetic pathway, which is quantitatively estimated by combining the Population model and Butler-Volmer model with the Eyring-like equation and is further confirmed by density functional theory calculations. The WOR rate under this condition shows more than 1 order of magnitude enhancement compared with that of first-, second-, or third-order kinetics. Focusing on α-Fe2O3, the accumulated high-density surface holes form adjacent FeV═O intermediates that effectively activate surface-adsorbed H2O molecules via the hydrogen-bonding effect, as revealed by operando Raman measurements and ab initio molecular dynamics simulations. This work discloses a systematic understanding of the internal relations between activation energy and reaction orders of surface holes for future WOR study.
科研通智能强力驱动
Strongly Powered by AbleSci AI